diff --git a/py4DSTEM/tomography/tomography.py b/py4DSTEM/tomography/tomography.py index b5b2247bb..08a957385 100644 --- a/py4DSTEM/tomography/tomography.py +++ b/py4DSTEM/tomography/tomography.py @@ -98,7 +98,8 @@ def preprocess( bin_real_space: int factor for binnning in real space crop_reciprocal_space: float - if not None, crops reciprocal space on all sides by integer + if not None, crops reciprocal space on all sides by integer. + Can pass an single integer of a 4-tuple q_max_inv_A: int maximum q in inverse angstroms force_q_to_r_rotation_deg:float @@ -343,7 +344,8 @@ def _prepare_datacube( masks_real_space: list of np.ndarray or np.ndarray mask for real space. can be the same for each datacube of individually specified. crop_reciprocal_space: float - if not None, crops reciprocal space on all sides by integer + if not None, crops reciprocal space on all sides by integer. + Can pass an single integer of a 4-tuple q_max_inv_A: int maximum q in inverse angtroms """ @@ -372,14 +374,25 @@ def _prepare_datacube( mask_real_space = None if crop_reciprocal_space is not None: - datacube.crop_Q( - ( - crop_reciprocal_space, - -crop_reciprocal_space, - crop_reciprocal_space, - -crop_reciprocal_space, + if np.isscalar(crop_reciprocal_space): + datacube.crop_Q( + ( + crop_reciprocal_space, + -crop_reciprocal_space, + crop_reciprocal_space, + -crop_reciprocal_space, + ) + ) + else: + datacube.crop_Q( + ( + crop_reciprocal_space[0], + -crop_reciprocal_space[1], + crop_reciprocal_space[2], + -crop_reciprocal_space, + [3], + ) ) - ) # resize diffraction space if diffraction_intensities_shape is not None: @@ -1283,17 +1296,31 @@ def _back( i[a] = xp.arange(a.size) i = xp.tile(i, 4) + xp.repeat(xp.arange(4), i.shape[0]) * (i.shape[0]) - normalize = xp.ones((xp.repeat(update, 2, axis=1)[:, 1:]).shape) * 2 - normalize[:, 0] = 1 + if s[-1] % 2 > 0: + normalize = xp.ones((xp.repeat(update, 2, axis=1)[:, 1:]).shape) * 2 + normalize[:, 0] = 1 - update_reshaped = xp.repeat( - ( - (xp.tile(xp.repeat(update, 2, axis=1)[:, 1:] / normalize, (4)))[:, i] - * (self._weights_diff[ind_update]) - ), - 4 * num_points, - axis=0, - ) / (num_points) + update_reshaped = xp.repeat( + ( + (xp.tile(xp.repeat(update, 2, axis=1)[:, 1:] / normalize, (4)))[ + :, i + ] + * (self._weights_diff[ind_update]) + ), + 4 * num_points, + axis=0, + ) / (num_points) + else: + normalize = xp.ones((xp.repeat(update, 2, axis=1)).shape) * 2 + + update_reshaped = xp.repeat( + ( + (xp.tile(xp.repeat(update, 2, axis=1) / normalize, (4)))[:, i] + * (self._weights_diff[ind_update]) + ), + 4 * num_points, + axis=0, + ) / (num_points) real_index = xp.ravel_multi_index( (self._ind0.ravel(), self._ind1.ravel()), (s[1], s[2]), mode="clip"