diff --git a/software/PHY_emulator/MMSE_BER.py b/software/PHY_emulator/MMSE_BER.py index b74ef218a..969f8bd86 100644 --- a/software/PHY_emulator/MMSE_BER.py +++ b/software/PHY_emulator/MMSE_BER.py @@ -18,6 +18,8 @@ import sys import pyflexfloat as ff import matplotlib.pyplot as plt +from scipy.linalg import solve_triangular + # __ __ ___ __ __ ___ _______ __ # | \/ |_ _| \/ |/ _ \ __|_ _\ \/ / @@ -115,12 +117,10 @@ def mmse(x, H, y, N, my_type): # MMSE estimator H_h = H.conj().T G = np.matmul(H_h, H) + N * np.eye(H.shape[1]) - # G = np.matmul(H_h, H) xhat = np.matmul(np.linalg.inv(G), np.dot(H_h, y)) - # Type cast xhat = xhat.real.astype(my_type) + 1j * xhat.imag.astype(my_type) - H = H.flatten() + H = H.flatten(order='C') return N, H, y, x, xhat @@ -129,26 +129,23 @@ def generate_mimo_transmission_f16( # Create input vector idx = np.random.randint(0, len(symbols), size=N_tx) + Es = np.mean(abs(symbols)**2) x = symbols[idx] # Generate channel and noise if channel_type == 'rayleigh': # Generate Rayleigh fading channel - scale = 1.0 H = np.sqrt(np.random.chisquare(2, [N_rx, N_tx])) + 1j * \ np.sqrt(np.random.chisquare(2, [N_rx, N_tx])) - Es = np.mean(abs(symbols)**2) Eh = (np.linalg.norm(H, 'fro')**2) / N_rx elif channel_type == 'random': H = np.sqrt(0.5) * \ (np.random.normal(0, 1, [N_rx, N_tx]) + 1j * np.random.normal(0, 1, [N_rx, N_tx])) - Es = np.mean(abs(symbols)**2) Eh = (np.linalg.norm(H, 'fro')**2) / N_rx else: # Generate AWGN channel H = np.eye(N_rx) + 1.j * np.zeros([N_rx, N_tx]) - Es = np.mean(abs(symbols)**2) Eh = 1 # Noise variance @@ -172,6 +169,7 @@ def generate_mimo_transmission_f16( # Golden model x64 = np.column_stack((x64.real, x64.imag)).flatten() xhat64 = np.column_stack((xhat64.real, xhat64.imag)).flatten() + output = { "N16": N16, "y16": y16, @@ -222,8 +220,8 @@ def gen_data_header_file(outdir, my_type, **kwargs): string += "#define N_ITR ({})\n".format(kwargs['N_itr']) string += stringify_array(kwargs['H'].flatten(order='F'), my_type, "l2_H") - string += stringify_array(kwargs['y'].flatten(), my_type, "l2_y") - string += stringify_array(kwargs['N'].flatten(), my_type, "l2_S") + string += stringify_array(kwargs['y'].flatten(order='F'), my_type, "l2_y") + string += stringify_array(kwargs['N'].flatten(order='F'), my_type, "l2_S") f.write(string) @@ -236,10 +234,10 @@ def banshee_call(banshee_dir: pathlib.Path.cwd(), file_dir = os.path.dirname(os.path.realpath(__file__)) compile_app = "DEFINES=" + compiler_flag + " " compile_app += "l1_bank_size=16384 config=terapool " - compile_app += "make COMPILER=llvm BIN_DIR={}/bin ".format(file_dir) + compile_app += "make COMPILER=llvm ".format(file_dir) compile_app += "{} -C {}/apps/baremetal".format(app, software_dir) banshee_arg = " --num-cores 1 --num-clusters 1 --configuration config/terapool.yaml" - banshee_app = " {}/bin/{}".format(file_dir, app) + banshee_app = " {}/bin/apps/baremetal/{}".format(software_dir, app) run_banshee = "SNITCH_LOG=info cargo run --" + banshee_arg + banshee_app # Compile code @@ -360,7 +358,6 @@ def main(): # Arithmetic precisions + compiler flags if run_banshee & (channel_type == "rayleigh"): precisions = [['64b', ""], - ['16b-MP', "\"-DSINGLE -DBANSHEE\""], ['16b-MP wDotp', "\"-DSINGLE -DBANSHEE -DVEC\""]] vSNRdB = range(0, 40, 4) vITR = np.concatenate([np.full(9, 1), np.full(1, 2)]) @@ -459,8 +456,9 @@ def main(): gen_data_header_file(DATA_DIR, '__fp16', **kwargs) result = banshee_call( BANSHEE_DIR, SOFTWARE_DIR, flag, "mimo_mmse_f16") - result = banshee_cast_output(result.stderr) - vxhat[iPrec + 1, :, :] = result.reshape(2 * N_tx, N_batch) + result_casted = banshee_cast_output(result.stderr) + vxhat[iPrec + 1, :, :] = result_casted.reshape(2 * N_tx, N_batch, order='F') + # ---------------------------------------------------------------- # ---------------------------------------------------------------- @@ -510,10 +508,10 @@ def main(): timestr = time.strftime("%Y%m%d_%H%M%S", current_local_time) col_names = [precision[0] for precision in precisions] row_names = [f"{value} dB" for value in vSNRdB] - df_ber = pd.DataFrame(vBER.reshape(-1, 1), columns=col_names, index=row_names) - df_evm = pd.DataFrame(vEVM.reshape(-1, 1), columns=col_names, index=row_names) - df_ber.to_excel(f"BER_{timestr}.odf", index=True, header=True, engine='odf') - df_evm.to_excel(f"EVM_{timestr}.odf", index=True, header=True, engine='odf') + df_ber = pd.DataFrame(np.transpose(vBER), columns=col_names, index=row_names) + df_evm = pd.DataFrame(np.transpose(vEVM), columns=col_names, index=row_names) + df_ber.to_excel(f"BER_{timestr}.ods", index=True, header=True, engine='odf') + df_evm.to_excel(f"EVM_{timestr}.ods", index=True, header=True, engine='odf') # Plot output