-
Notifications
You must be signed in to change notification settings - Fork 271
/
axi_lite_to_apb.sv
494 lines (468 loc) · 19.5 KB
/
axi_lite_to_apb.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
// Copyright (c) 2020 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors:
// - Wolfgang Roenninger <[email protected]>
// - Andreas Kurth <[email protected]>
// - Samuel Riedel <[email protected]>
// Description: AXI4-Lite to APB4 bridge
//
// This module has one AXI4-Lite slave port and is capable of generating
// APB4 requests for multiple APB4 slave modules. The address and data widths
// of AXI4-Lite and APB4 have to be the same for both ports and are enforced over assertions.
// The selection of the APB4 slave is handled by the `addr_decode` module from `common_cells`.
// This module will answer with a `axi_pkg::RESP_DECERR` when a AXI4-Lite AW or AR request
// is not in the address map of the module and `no` APB4 request is made.
//
// The type of the APB4 request is required to look like:
// typedef struct packed {
// addr_t paddr; // same as AXI4-Lite
// prot_t pprot; // same as AXI4-Lite, specification is the same
// logic psel; // each APB4 slave has its own single-bit psel
// logic penable; // enable signal shows second APB4 cycle
// logic pwrite; // write enable
// data_t pwdata; // write data, comes from W channel
// strb_t pstrb; // write strb, comes from W channel
// } apb_req_t;
// For every APB4 slave, the `psel` field is only asserted when the decoded address matches that
// slave. If `psel` is deasserted, the value of the other fields may be undefined.
//
// The type of the APB4 response is required to look like:
// typedef struct packed {
// logic pready; // slave signals that it is ready
// data_t prdata; // read data, connects to R channel
// logic pslverr; // gets translated into either `axi_pkg::RESP_OK` or `axi_pkg::RESP_SLVERR`
// } apb_resp_t;
// Each connected `apb_resp`, has to be connected to the corresponding port index. The module
// routes the response depending on the `apb_req.psel` bit and `apb_req.pwrite` either to the
// AXI4Lite B channel for writes and to the R channel for reads.
`include "common_cells/registers.svh"
module axi_lite_to_apb #(
parameter int unsigned NoApbSlaves = 32'd1, // Number of connected APB slaves
parameter int unsigned NoRules = 32'd1, // Number of APB address rules
parameter int unsigned AddrWidth = 32'd32, // Address width
parameter int unsigned DataWidth = 32'd32, // Data width
parameter bit PipelineRequest = 1'b0, // Pipeline request path
parameter bit PipelineResponse = 1'b0, // Pipeline response path
parameter type axi_lite_req_t = logic, // AXI4-Lite request struct
parameter type axi_lite_resp_t = logic, // AXI4-Lite response sruct
parameter type apb_req_t = logic, // APB4 request struct
parameter type apb_resp_t = logic, // APB4 response struct
parameter type rule_t = logic // Address Decoder rule from `common_cells`
) (
input logic clk_i, // Clock
input logic rst_ni, // Asynchronous reset active low
// AXI LITE slave port
input axi_lite_req_t axi_lite_req_i,
output axi_lite_resp_t axi_lite_resp_o,
// APB master port
output apb_req_t [NoApbSlaves-1:0] apb_req_o,
input apb_resp_t [NoApbSlaves-1:0] apb_resp_i,
// APB Slave Address Map
input rule_t [NoRules-1:0] addr_map_i
);
localparam logic RD = 1'b0; // Encode index of a read request
localparam logic WR = 1'b1; // Encode index of a write request
localparam int unsigned SelIdxWidth = (NoApbSlaves > 32'd1) ? $clog2(NoApbSlaves) : 32'd1;
typedef logic [AddrWidth-1:0] addr_t; // AXI4-Lite, APB4 and rule_t addr width
typedef logic [DataWidth-1:0] data_t; // AXI4-Lite and APB4 data width
typedef logic [DataWidth/8-1:0] strb_t; // AXI4-Lite and APB4 strb width
typedef logic [SelIdxWidth-1:0] sel_idx_t; // Selection index from addr_decode
typedef struct packed {
addr_t addr;
axi_pkg::prot_t prot; // prot has the exact same bit mapping in AXI4-Lite as In APB v2.0
data_t data;
strb_t strb;
logic write;
} int_req_t; // request type generated by the read and write channel, internal
typedef struct packed {
data_t data; // read data from APB
axi_pkg::resp_t resp; // response bit from APB
} int_resp_t; // internal
typedef enum logic {
Setup = 1'b0, // APB in Idle or Setup
Access = 1'b1 // APB in Access
} apb_state_e;
// Signals from AXI4-Lite slave to arbitration tree
int_req_t [1:0] axi_req;
logic [1:0] axi_req_valid, axi_req_ready;
// Signals from response spill registers
axi_pkg::resp_t axi_bresp;
logic axi_bresp_valid, axi_bresp_ready;
int_resp_t axi_rresp;
logic axi_rresp_valid, axi_rresp_ready;
// -----------------------------------------------------------------------------------------------
// AXI4-Lite slave
// -----------------------------------------------------------------------------------------------
// read request
assign axi_req[RD] = '{
addr: axi_lite_req_i.ar.addr,
prot: axi_lite_req_i.ar.prot,
data: '0,
strb: '0,
write: RD
};
assign axi_req_valid[RD] = axi_lite_req_i.ar_valid;
// write request
assign axi_req[WR] = '{
addr: axi_lite_req_i.aw.addr,
prot: axi_lite_req_i.aw.prot,
data: axi_lite_req_i.w.data,
strb: axi_lite_req_i.w.strb,
write: WR
};
assign axi_req_valid[WR] = axi_lite_req_i.aw_valid & axi_lite_req_i.w_valid;
assign axi_lite_resp_o = '{
aw_ready: axi_req_valid[WR] & axi_req_ready[WR], // if AXI AW & W valid & tree gnt_o[WR]
w_ready: axi_req_valid[WR] & axi_req_ready[WR], // if AXI AW & W valid & tree gnt_o[WR]
b: '{resp: axi_bresp}, // from spill reg
b_valid: axi_bresp_valid, // from spill reg
ar_ready: axi_req_valid[RD] & axi_req_ready[RD], // if AXI AR valid and tree gnt[RD]
r: '{data: axi_rresp.data, resp: axi_rresp.resp}, // from spill reg
r_valid: axi_rresp_valid // from spill reg
};
// -----------------------------------------------------------------------------------------------
// Arbitration between write and read plus spill register for request and response
// -----------------------------------------------------------------------------------------------
int_req_t arb_req, apb_req;
logic arb_req_valid, arb_req_ready, apb_req_valid, apb_req_ready;
axi_pkg::resp_t apb_wresp;
logic apb_wresp_valid, apb_wresp_ready;
int_resp_t apb_rresp;
logic apb_rresp_valid, apb_rresp_ready;
rr_arb_tree #(
.NumIn ( 32'd2 ),
.DataType ( int_req_t ),
.ExtPrio ( 1'b0 ),
.AxiVldRdy( 1'b1 ),
.LockIn ( 1'b1 )
) i_req_arb (
.clk_i,
.rst_ni,
.flush_i ( '0 ),
.rr_i ( '0 ),
.req_i ( axi_req_valid ),
.gnt_o ( axi_req_ready ),
.data_i ( axi_req ),
.gnt_i ( arb_req_ready ),
.req_o ( arb_req_valid ),
.data_o ( arb_req ),
.idx_o ( /*not used*/ )
);
if (PipelineRequest) begin : gen_req_spill
spill_register #(
.T ( int_req_t ),
.Bypass ( 1'b0 )
) i_req_spill (
.clk_i,
.rst_ni,
.valid_i ( arb_req_valid ),
.ready_o ( arb_req_ready ),
.data_i ( arb_req ),
.valid_o ( apb_req_valid ),
.ready_i ( apb_req_ready ),
.data_o ( apb_req )
);
end else begin : gen_req_ft_reg
fall_through_register #(
.T ( int_req_t )
) i_req_ft_reg (
.clk_i,
.rst_ni,
.clr_i ( 1'b0 ),
.testmode_i ( 1'b0 ),
.valid_i ( arb_req_valid ),
.ready_o ( arb_req_ready ),
.data_i ( arb_req ),
.valid_o ( apb_req_valid ),
.ready_i ( apb_req_ready ),
.data_o ( apb_req )
);
end
if (PipelineResponse) begin : gen_resp_spill
spill_register #(
.T ( axi_pkg::resp_t ),
.Bypass ( 1'b0 )
) i_write_resp_spill (
.clk_i,
.rst_ni,
.valid_i ( apb_wresp_valid ),
.ready_o ( apb_wresp_ready ),
.data_i ( apb_wresp ),
.valid_o ( axi_bresp_valid ),
.ready_i ( axi_lite_req_i.b_ready ),
.data_o ( axi_bresp )
);
spill_register #(
.T ( int_resp_t ),
.Bypass ( 1'b0 )
) i_read_resp_spill (
.clk_i,
.rst_ni,
.valid_i ( apb_rresp_valid ),
.ready_o ( apb_rresp_ready ),
.data_i ( apb_rresp ),
.valid_o ( axi_rresp_valid ),
.ready_i ( axi_lite_req_i.r_ready ),
.data_o ( axi_rresp )
);
end else begin : gen_resp_ft_reg
fall_through_register #(
.T ( axi_pkg::resp_t )
) i_write_resp_ft_reg (
.clk_i,
.rst_ni,
.clr_i ( 1'b0 ),
.testmode_i ( 1'b0 ),
.valid_i ( apb_wresp_valid ),
.ready_o ( apb_wresp_ready ),
.data_i ( apb_wresp ),
.valid_o ( axi_bresp_valid ),
.ready_i ( axi_lite_req_i.b_ready ),
.data_o ( axi_bresp )
);
fall_through_register #(
.T ( int_resp_t )
) i_read_resp_ft_reg (
.clk_i,
.rst_ni,
.clr_i ( 1'b0 ),
.testmode_i ( 1'b0 ),
.valid_i ( apb_rresp_valid ),
.ready_o ( apb_rresp_ready ),
.data_i ( apb_rresp ),
.valid_o ( axi_rresp_valid ),
.ready_i ( axi_lite_req_i.r_ready ),
.data_o ( axi_rresp )
);
end
// -----------------------------------------------------------------------------------------------
// APB master FSM
// -----------------------------------------------------------------------------------------------
// APB access state machine
apb_state_e apb_state_q, apb_state_d;
logic apb_update;
// output of address decoder to determine PSELx signal
logic apb_dec_valid;
sel_idx_t apb_sel_idx;
addr_decode #(
.NoIndices( NoApbSlaves ),
.NoRules ( NoRules ),
.addr_t ( addr_t ),
.rule_t ( rule_t )
) i_apb_decode (
.addr_i ( apb_req.addr ),
.addr_map_i ( addr_map_i ),
.idx_o ( apb_sel_idx ),
.dec_valid_o ( apb_dec_valid ), // when not valid -> decode error
.dec_error_o ( /*not used*/ ),
.en_default_idx_i ( '0 ),
.default_idx_i ( '0 )
);
always_comb begin
// default assignments
apb_state_d = apb_state_q;
apb_update = 1'b0;
apb_req_o = '0;
apb_req_ready = 1'b0;
// response defaults to the two response spill registers
apb_wresp = axi_pkg::RESP_SLVERR;
apb_wresp_valid = 1'b0;
apb_rresp = '{data: data_t'(32'hDEA110C8), resp: axi_pkg::RESP_SLVERR};
apb_rresp_valid = 1'b0;
unique case (apb_state_q)
Setup: begin
// `Idle` and `Setup` steps
// can check here for readiness, because the response goes into spill_registers
if (apb_req_valid && apb_wresp_ready && apb_rresp_ready) begin
if (apb_dec_valid) begin
// `Setup` step
// set the request output
apb_req_o[apb_sel_idx] = '{
paddr: apb_req.addr,
pprot: apb_req.prot,
psel: 1'b1,
penable: 1'b0,
pwrite: apb_req.write,
pwdata: apb_req.data,
pstrb: apb_req.strb
};
apb_state_d = Access;
apb_update = 1'b1;
end else begin
// decode error, generate error and do not generate APB request, pop it
apb_req_ready = 1'b1;
if (apb_req.write) begin
apb_wresp = axi_pkg::RESP_DECERR;
apb_wresp_valid = 1'b1;
end else begin
apb_rresp.resp = axi_pkg::RESP_DECERR;
apb_rresp_valid = 1'b1;
end
end
end
end
Access: begin
// `Access` step
apb_req_o[apb_sel_idx] = '{
paddr: apb_req.addr,
pprot: apb_req.prot,
psel: 1'b1,
penable: 1'b1,
pwrite: apb_req.write,
pwdata: apb_req.data,
pstrb: apb_req.strb
};
if (apb_resp_i[apb_sel_idx].pready) begin
// transfer, pop the request, generate response and update state
apb_req_ready = 1'b1;
// we are only in this state if the response spill registers are ready anyway
if (apb_req.write) begin
apb_wresp = apb_resp_i[apb_sel_idx].pslverr ?
axi_pkg::RESP_SLVERR : axi_pkg::RESP_OKAY;
apb_wresp_valid = 1'b1;
end else begin
apb_rresp.data = apb_resp_i[apb_sel_idx].prdata;
apb_rresp.resp = apb_resp_i[apb_sel_idx].pslverr ?
axi_pkg::RESP_SLVERR : axi_pkg::RESP_OKAY;
apb_rresp_valid = 1'b1;
end
apb_state_d = Setup;
apb_update = 1'b1;
end
end
default: /* do nothing */ ;
endcase
end
`FFLARN(apb_state_q, apb_state_d, apb_update, Setup, clk_i, rst_ni)
// parameter check
// pragma translate_off
`ifndef VERILATOR
initial begin : check_params
addr_width: assert ($bits(axi_lite_req_i.aw.addr ) == $bits(apb_req_o[0].paddr)) else
$fatal(1, $sformatf("AXI4-Lite and APB address width not equal"));
wdata_width: assert ($bits(axi_lite_req_i.w.data ) == $bits(apb_req_o[0].pwdata)) else
$fatal(1, $sformatf("AXI4-Lite and APB write data width not equal"));
strb_width: assert ($bits(axi_lite_req_i.w.strb ) == $bits(apb_req_o[0].pstrb)) else
$fatal(1, $sformatf("AXI4-Lite and APB strobe width not equal"));
rdata_width: assert ($bits(axi_lite_resp_o.r.data ) == $bits(apb_resp_i[0].prdata)) else
$fatal(1, $sformatf("AXI4-Lite and APB read data width not equal"));
sel_width: assert ($bits(apb_req_o[0].psel) == 32'd1) else
$fatal(1, $sformatf("APB psel signal has to have a width of 1'b1"));
end
`endif
// pragma translate_on
endmodule
`include "axi/typedef.svh"
`include "axi/assign.svh"
module axi_lite_to_apb_intf #(
parameter int unsigned NoApbSlaves = 32'd1, // Number of connected APB slaves
parameter int unsigned NoRules = 32'd1, // Number of APB address rules
parameter int unsigned AddrWidth = 32'd32, // Address width
parameter int unsigned DataWidth = 32'd32, // Data width
parameter bit PipelineRequest = 1'b0, // Pipeline request path
parameter bit PipelineResponse = 1'b0, // Pipeline response path
parameter type rule_t = logic, // Address Decoder rule from `common_cells`
// DEPENDENT PARAMERETS, DO NOT OVERWRITE!
parameter type addr_t = logic [AddrWidth-1:0],
parameter type data_t = logic [DataWidth-1:0],
parameter type strb_t = logic [DataWidth/8-1:0],
parameter type sel_t = logic [NoApbSlaves-1:0]
) (
input logic clk_i, // Clock
input logic rst_ni, // Asynchronous reset active low
// AXI LITE slave port
AXI_LITE.Slave slv,
// APB master port
output addr_t paddr_o,
output logic [2:0] pprot_o,
output sel_t pselx_o,
output logic penable_o,
output logic pwrite_o,
output data_t pwdata_o,
output strb_t pstrb_o,
input logic [NoApbSlaves-1:0] pready_i,
input data_t [NoApbSlaves-1:0] prdata_i,
input [NoApbSlaves-1:0] pslverr_i,
// APB Slave Address Map
input rule_t [NoRules-1:0] addr_map_i
);
localparam int unsigned SelIdxWidth = NoApbSlaves > 1 ? $clog2(NoApbSlaves) : 1;
typedef struct packed {
addr_t paddr; // same as AXI4-Lite
axi_pkg::prot_t pprot; // same as AXI4-Lite, specification is the same
logic psel; // onehot, one psel line per connected APB4 slave
logic penable; // enable signal shows second APB4 cycle
logic pwrite; // write enable
data_t pwdata; // write data, comes from W channel
strb_t pstrb; // write strb, comes from W channel
} apb_req_t;
typedef struct packed {
logic pready; // slave signals that it is ready
data_t prdata; // read data, connects to R channel
logic pslverr; // gets translated into either `axi_pkg::RESP_OK` or `axi_pkg::RESP_SLVERR`
} apb_resp_t;
`AXI_LITE_TYPEDEF_AW_CHAN_T(aw_chan_t, addr_t)
`AXI_LITE_TYPEDEF_W_CHAN_T(w_chan_t, data_t, strb_t)
`AXI_LITE_TYPEDEF_B_CHAN_T(b_chan_t)
`AXI_LITE_TYPEDEF_AR_CHAN_T(ar_chan_t, addr_t)
`AXI_LITE_TYPEDEF_R_CHAN_T(r_chan_t, data_t)
`AXI_LITE_TYPEDEF_REQ_T(axi_req_t, aw_chan_t, w_chan_t, ar_chan_t)
`AXI_LITE_TYPEDEF_RESP_T(axi_resp_t, b_chan_t, r_chan_t)
axi_req_t axi_req;
axi_resp_t axi_resp;
apb_req_t [NoApbSlaves-1:0] apb_req;
apb_resp_t [NoApbSlaves-1:0] apb_resp;
logic [SelIdxWidth-1:0] apb_sel;
`AXI_LITE_ASSIGN_TO_REQ(axi_req, slv)
`AXI_LITE_ASSIGN_FROM_RESP(slv, axi_resp)
onehot_to_bin #(
.ONEHOT_WIDTH ( NoApbSlaves )
) i_onehot_to_bin (
.onehot ( pselx_o ),
.bin ( apb_sel )
);
assign paddr_o = apb_req[apb_sel].paddr;
assign pprot_o = apb_req[apb_sel].pprot;
assign penable_o = apb_req[apb_sel].penable;
assign pwrite_o = apb_req[apb_sel].pwrite;
assign pwdata_o = apb_req[apb_sel].pwdata;
assign pstrb_o = apb_req[apb_sel].pstrb;
for (genvar i = 0; i < NoApbSlaves; i++) begin : gen_apb_resp_assign
assign pselx_o[i] = apb_req[i].psel;
assign apb_resp[i].pready = pready_i[i];
assign apb_resp[i].prdata = prdata_i[i];
assign apb_resp[i].pslverr = pslverr_i[i];
end
axi_lite_to_apb #(
.NoApbSlaves ( NoApbSlaves ),
.NoRules ( NoRules ),
.AddrWidth ( AddrWidth ),
.DataWidth ( DataWidth ),
.PipelineRequest ( PipelineRequest ),
.PipelineResponse ( PipelineResponse ),
.axi_lite_req_t ( axi_req_t ),
.axi_lite_resp_t ( axi_resp_t ),
.apb_req_t ( apb_req_t ),
.apb_resp_t ( apb_resp_t ),
.rule_t ( rule_t )
) i_axi_lite_to_apb (
.clk_i, // Clock
.rst_ni, // Asynchronous reset active low
// AXI LITE slave port
.axi_lite_req_i ( axi_req ),
.axi_lite_resp_o ( axi_resp ),
// APB master port
.apb_req_o ( apb_req ),
.apb_resp_i ( apb_resp ),
// APB Slave Address Map
.addr_map_i
);
endmodule