From 6664c97fa6fd1e13f3ace1acdefa5be2f6f7ddfd Mon Sep 17 00:00:00 2001 From: Matteo Perotti Date: Mon, 26 Aug 2024 18:16:24 +0200 Subject: [PATCH] [apps] Add particlefilter bmark --- apps/particlefilter/lib/cos.h | 1 + apps/particlefilter/lib/exp.h | 1 + apps/particlefilter/lib/log.h | 1 + apps/particlefilter/main.c | 1008 +++++++++++++++++++++++++++++++++ 4 files changed, 1011 insertions(+) create mode 120000 apps/particlefilter/lib/cos.h create mode 120000 apps/particlefilter/lib/exp.h create mode 120000 apps/particlefilter/lib/log.h create mode 100644 apps/particlefilter/main.c diff --git a/apps/particlefilter/lib/cos.h b/apps/particlefilter/lib/cos.h new file mode 120000 index 000000000..7fa8e1c4e --- /dev/null +++ b/apps/particlefilter/lib/cos.h @@ -0,0 +1 @@ +../../cos/kernel/cos.h \ No newline at end of file diff --git a/apps/particlefilter/lib/exp.h b/apps/particlefilter/lib/exp.h new file mode 120000 index 000000000..a3e98976a --- /dev/null +++ b/apps/particlefilter/lib/exp.h @@ -0,0 +1 @@ +../../exp/kernel/exp.h \ No newline at end of file diff --git a/apps/particlefilter/lib/log.h b/apps/particlefilter/lib/log.h new file mode 120000 index 000000000..987bd99e4 --- /dev/null +++ b/apps/particlefilter/lib/log.h @@ -0,0 +1 @@ +../../log/kernel/log.h \ No newline at end of file diff --git a/apps/particlefilter/main.c b/apps/particlefilter/main.c new file mode 100644 index 000000000..706337124 --- /dev/null +++ b/apps/particlefilter/main.c @@ -0,0 +1,1008 @@ +// This modified implementation is based on the following work: +/** + * @file ex_particle_OPENMP_seq.c + * @author Michael Trotter & Matt Goodrum + * @brief Particle filter implementation in C/OpenMP + */ +#include +#include +#include + +#include + +#ifndef SPIKE +#include "printf.h" +#endif + +#include "runtime.h" +// RISC-V VECTOR Version by Cristóbal Ramírez Lazo, "Barcelona 2019" +#include "lib/cos.h" +#include "lib/exp.h" +#include "lib/log.h" + +// #include +#include +#include +#define PI 3.1415926535897932 +/** +@var M value for Linear Congruential Generator (LCG); use GCC's value +*/ +long M = INT_MAX; +/** +@var A value for LCG +*/ +int A = 1103515245; +/** +@var C value for LCG +*/ +int C = 12345; + +// Define sizes +#if defined(SIMTINY) +#define ISZX 128 +#define ISZY 128 +#define NFR 2 +#define NPARTICLES 256 +#elif defined(SIMSMALL) +#define ISZX 128 +#define ISZY 128 +#define NFR 8 +#define NPARTICLES 1024 +#elif defined(SIMMEDIUM) +#define ISZX 128 +#define ISZY 128 +#define NFR 16 +#define NPARTICLES 4096 +#elif defined(SIMLARGE) +#define ISZX 128 +#define ISZY 128 +#define NFR 24 +#define NPARTICLES 8192 +#else +#define ISZX 8 +#define ISZY 8 +#define NFR 2 +#define NPARTICLES 64 +#endif + +int Seed = 353; +int32_t seed[NPARTICLES]; +int64_t seed_64[NPARTICLES]; +int I[ISZX * ISZY * NFR]; + +/** + * Takes in a double and returns an integer that approximates to that double + * @return if the mantissa < .5 => return value < input value; else return value + * > input value + */ +double roundDouble(double value) { + int newValue = (int)(value); + if (value - newValue < .5) + return newValue; + else + return newValue++; +} +/** + * Set values of the 3D array to a newValue if that value is equal to the + * testValue + * @param testValue The value to be replaced + * @param newValue The value to replace testValue with + * @param array3D The image vector + * @param dimX The x dimension of the frame + * @param dimY The y dimension of the frame + * @param dimZ The number of frames + */ +void setIf(int testValue, int newValue, int *array3D, int *dimX, int *dimY, + int *dimZ) { + int x, y, z; + for (x = 0; x < *dimX; x++) { + for (y = 0; y < *dimY; y++) { + for (z = 0; z < *dimZ; z++) { + if (array3D[x * *dimY * *dimZ + y * *dimZ + z] == testValue) + array3D[x * *dimY * *dimZ + y * *dimZ + z] = newValue; + } + } + } +} +/** + * Generates a uniformly distributed random number using the provided seed and + * GCC's settings for the Linear Congruential Generator (LCG) + * @see http://en.wikipedia.org/wiki/Linear_congruential_generator + * @note This function is thread-safe + * @param seed The seed array + * @param index The specific index of the seed to be advanced + * @return a uniformly distributed number [0, 1) + */ +double randu(int *seed, int index) { + int num = A * seed[index] + C; + seed[index] = num % M; + return fabs(seed[index] / ((double)M)); +} + +inline vfloat64m1_t randu_vector(long int *seed, int index, size_t gvl) { + /* + vint64m1_t xseed = vle64_v_i64m1(&seed[index],gvl); + vint64m1_t xA = vmv_v_x_i64m1(A,gvl); + vint64m1_t xC = vmv_v_x_i64m1(C,gvl); + vint64m1_t xM = vmv_v_x_i64m1(M,gvl); + + xseed = vmul_vv_i64m1(xseed,xA,gvl); + xseed = vadd_vv_i64m1(xseed,xC,gvl); + + vse64_v_i64m1(&seed[index],vrem_vv_i64m1(xseed,xM,gvl),gvl); + asm volatile ("fence"::); + vfloat64m1_t xResult; + xResult = + _MM_DIV_f64(vfcvt_f_x_v_f64m1(xseed,gvl),vfcvt_f_x_v_f64m1(xM,gvl),gvl); + xResult = vfsgnjx_vv_f64m1(xResult,xResult,gvl); + return xResult; + */ + + /* + Esta parte del codigo deberia ser en 32 bits, pero las instrucciones de + conversion aún no están disponibles, + moviendo todo a 64 bits el resultado cambia ya que no se desborda, y las + variaciones son muchas. + */ + double result[256]; + int num[256]; + // asm volatile ("fence"::); + // double* result = (double*)malloc(gvl*sizeof(double)); + // int* num = (int*)malloc(gvl*sizeof(int)); + + asm volatile("fence" ::); + for (int x = index; x < (int)(index + gvl); x++) { + num[x - index] = A * seed[x] + C; + seed[x] = num[x - index] % M; + result[x - index] = fabs(seed[x] / ((double)M)); + } + vfloat64m1_t xResult; + xResult = vle64_v_f64m1(&result[0], gvl); + asm volatile("fence" ::); + return xResult; +} +/** + * Generates a normally distributed random number using the Box-Muller + * transformation + * @note This function is thread-safe + * @param seed The seed array + * @param index The specific index of the seed to be advanced + * @return a double representing random number generated using the Box-Muller + * algorithm + * @see http://en.wikipedia.org/wiki/Normal_distribution, section computing + * value for normal random distribution + */ +double randn(int *seed, int index) { + /*Box-Muller algorithm*/ + double u = randu(seed, index); + double v = randu(seed, index); + double cosine = cos(2 * PI * v); + double rt = -2 * log(u); + return sqrt(rt) * cosine; +} + +inline vfloat64m1_t randn_vector(long int *seed, int index, size_t gvl) { + /*Box-Muller algorithm*/ + vfloat64m1_t xU = randu_vector(seed, index, gvl); + vfloat64m1_t xV = randu_vector(seed, index, gvl); + vfloat64m1_t xCosine; + vfloat64m1_t xRt; + + xV = vfmul_vv_f64m1(vfmv_v_f_f64m1(PI * 2.0, gvl), xV, gvl); + xCosine = __cos_1xf64(xV, gvl); + asm volatile("fence" ::); + xU = __log_1xf64(xU, gvl); + xRt = vfmul_vv_f64m1(vfmv_v_f_f64m1(-2.0, gvl), xU, gvl); + return vfmul_vv_f64m1(vfsqrt_v_f64m1(xRt, gvl), xCosine, gvl); +} +/** + * Sets values of 3D matrix using randomly generated numbers from a normal + * distribution + * @param array3D The video to be modified + * @param dimX The x dimension of the frame + * @param dimY The y dimension of the frame + * @param dimZ The number of frames + * @param seed The seed array + */ +void addNoise(int *array3D, int *dimX, int *dimY, int *dimZ, int *seed) { + int x, y, z; + for (x = 0; x < *dimX; x++) { + for (y = 0; y < *dimY; y++) { + for (z = 0; z < *dimZ; z++) { + array3D[x * *dimY * *dimZ + y * *dimZ + z] = + array3D[x * *dimY * *dimZ + y * *dimZ + z] + + (int)(5 * randn(seed, 0)); + } + } + } +} +/** + * Fills a radius x radius matrix representing the disk + * @param disk The pointer to the disk to be made + * @param radius The radius of the disk to be made + */ +void strelDisk(int *disk, int radius) { + int diameter = radius * 2 - 1; + int x, y; + for (x = 0; x < diameter; x++) { + for (y = 0; y < diameter; y++) { + double distance = sqrt(pow((double)(x - radius + 1), 2) + + pow((double)(y - radius + 1), 2)); + if (distance < radius) + disk[x * diameter + y] = 1; + } + } +} +/** + * Dilates the provided video + * @param matrix The video to be dilated + * @param posX The x location of the pixel to be dilated + * @param posY The y location of the pixel to be dilated + * @param poxZ The z location of the pixel to be dilated + * @param dimX The x dimension of the frame + * @param dimY The y dimension of the frame + * @param dimZ The number of frames + * @param error The error radius + */ +void dilate_matrix(int *matrix, int posX, int posY, int posZ, int dimX, + int dimY, int dimZ, int error) { + int startX = posX - error; + while (startX < 0) + startX++; + int startY = posY - error; + while (startY < 0) + startY++; + int endX = posX + error; + while (endX > dimX) + endX--; + int endY = posY + error; + while (endY > dimY) + endY--; + int x, y; + for (x = startX; x < endX; x++) { + for (y = startY; y < endY; y++) { + double distance = + sqrt(pow((double)(x - posX), 2) + pow((double)(y - posY), 2)); + if (distance < error) + matrix[x * dimY * dimZ + y * dimZ + posZ] = 1; + } + } +} + +/** + * Dilates the target matrix using the radius as a guide + * @param matrix The reference matrix + * @param dimX The x dimension of the video + * @param dimY The y dimension of the video + * @param dimZ The z dimension of the video + * @param error The error radius to be dilated + * @param newMatrix The target matrix + */ +void imdilate_disk(int *matrix, int dimX, int dimY, int dimZ, int error, + int *newMatrix) { + int x, y, z; + for (z = 0; z < dimZ; z++) { + for (x = 0; x < dimX; x++) { + for (y = 0; y < dimY; y++) { + if (matrix[x * dimY * dimZ + y * dimZ + z] == 1) { + dilate_matrix(newMatrix, x, y, z, dimX, dimY, dimZ, error); + } + } + } + } +} +/** + * Fills a 2D array describing the offsets of the disk object + * @param se The disk object + * @param numOnes The number of ones in the disk + * @param neighbors The array that will contain the offsets + * @param radius The radius used for dilation + */ +void getneighbors(int *se, double *neighbors, int radius) { + int x, y; + int neighY = 0; + int center = radius - 1; + int diameter = radius * 2 - 1; + for (x = 0; x < diameter; x++) { + for (y = 0; y < diameter; y++) { + if (se[x * diameter + y]) { + neighbors[neighY * 2] = (int)(y - center); + neighbors[neighY * 2 + 1] = (int)(x - center); + neighY++; + } + } + } +} +/** + * The synthetic video sequence we will work with here is composed of a + * single moving object, circular in shape (fixed radius) + * The motion here is a linear motion + * the foreground intensity and the backgrounf intensity is known + * the image is corrupted with zero mean Gaussian noise + * @param I The video itself + * @param IszX The x dimension of the video + * @param IszY The y dimension of the video + * @param Nfr The number of frames of the video + * @param seed The seed array used for number generation + */ +int NEWMATRIX[ISZX * ISZY * NFR]; +void videoSequence(int *I, int IszX, int IszY, int Nfr, int *seed) { + int k; + int max_size = IszX * IszY * Nfr; + /*get object centers*/ + int x0 = (int)roundDouble(IszY / 2.0); + int y0 = (int)roundDouble(IszX / 2.0); + I[x0 * IszY * Nfr + y0 * Nfr + 0] = 1; + + /*move point*/ + int xk, yk, pos; + for (k = 1; k < Nfr; k++) { + xk = abs(x0 + (k - 1)); + yk = abs(y0 - 2 * (k - 1)); + pos = yk * IszY * Nfr + xk * Nfr + k; + if (pos >= max_size) + pos = 0; + I[pos] = 1; + } + + /*dilate matrix*/ + int *newMatrix = (int *)NEWMATRIX; + imdilate_disk(I, IszX, IszY, Nfr, 5, newMatrix); + int x, y; + for (x = 0; x < IszX; x++) { + for (y = 0; y < IszY; y++) { + for (k = 0; k < Nfr; k++) { + I[x * IszY * Nfr + y * Nfr + k] = + newMatrix[x * IszY * Nfr + y * Nfr + k]; + } + } + } + + /*define background, add noise*/ + setIf(0, 100, I, &IszX, &IszY, &Nfr); + setIf(1, 228, I, &IszX, &IszY, &Nfr); + /*add noise*/ + addNoise(I, &IszX, &IszY, &Nfr, seed); +} +/** + * Determines the likelihood sum based on the formula: SUM( (IK[IND] - 100)^2 - + * (IK[IND] - 228)^2)/ 100 + * @param I The 3D matrix + * @param ind The current ind array + * @param numOnes The length of ind array + * @return A double representing the sum + */ +double calcLikelihoodSum(int *I, int *ind, int numOnes) { + double likelihoodSum = 0.0; + int y; + for (y = 0; y < numOnes; y++) + likelihoodSum += + (pow((I[ind[y]] - 100), 2) - pow((I[ind[y]] - 228), 2)) / 50.0; + return likelihoodSum; +} +/** + * Finds the first element in the CDF that is greater than or equal to the + * provided value and returns that index + * @note This function uses sequential search + * @param CDF The CDF + * @param lengthCDF The length of CDF + * @param value The value to be found + * @return The index of value in the CDF; if value is never found, returns the + * last index + */ +int findIndex(double *CDF, int lengthCDF, double value) { + int index = -1; + int x; + + // for(int a = 0; a < lengthCDF; a++) + // { + // printf("%f ",CDF[a]); + // } + // printf("\n"); + + // printf("CDF[x] >= value ,%f >= %f \n",CDF[0],value); + + for (x = 0; x < lengthCDF; x++) { + if (CDF[x] >= value) { + index = x; + break; + } + } + if (index == -1) { + return lengthCDF - 1; + } + return index; +} + +/** + * Finds the first element in the CDF that is greater than or equal to the + * provided value and returns that index + * @note This function uses binary search before switching to sequential search + * @param CDF The CDF + * @param beginIndex The index to start searching from + * @param endIndex The index to stop searching + * @param value The value to find + * @return The index of value in the CDF; if value is never found, returns the + * last index + * @warning Use at your own risk; not fully tested + */ +int findIndexBin(double *CDF, int beginIndex, int endIndex, double value) { + if (endIndex < beginIndex) + return -1; + int middleIndex = beginIndex + ((endIndex - beginIndex) / 2); + /*check the value*/ + if (CDF[middleIndex] >= value) { + /*check that it's good*/ + if (middleIndex == 0) + return middleIndex; + else if (CDF[middleIndex - 1] < value) + return middleIndex; + else if (CDF[middleIndex - 1] == value) { + while (middleIndex > 0 && CDF[middleIndex - 1] == value) + middleIndex--; + return middleIndex; + } + } + if (CDF[middleIndex] > value) + return findIndexBin(CDF, beginIndex, middleIndex + 1, value); + return findIndexBin(CDF, middleIndex - 1, endIndex, value); +} +/** + * The implementation of the particle filter using OpenMP for many frames + * @see http://openmp.org/wp/ + * @note This function is designed to work with a video of several frames. In + * addition, it references a provided MATLAB function which takes the video, the + * objxy matrix and the x and y arrays as arguments and returns the likelihoods + * @param I The video to be run + * @param IszX The x dimension of the video + * @param IszY The y dimension of the video + * @param Nfr The number of frames + * @param seed The seed array used for random number generation + * @param Nparticles The number of particles to be used + */ +#define RADIUS 5 +// #define DIAMETER RADIUS*2-1; +#define DIAMETER 9 +int DISK[DIAMETER * DIAMETER]; +double WEIGHTS[NPARTICLES]; +double LIKELIHOOD[NPARTICLES]; +double ARRAYX[NPARTICLES]; +double ARRAYY[NPARTICLES]; +double XJ[NPARTICLES]; +double YJ[NPARTICLES]; +double CDF[NPARTICLES]; +double U[NPARTICLES]; +double OBJXY[DIAMETER * DIAMETER]; +int IND[DIAMETER * DIAMETER * NPARTICLES]; +int DISK_V[DIAMETER * DIAMETER]; +double WEIGHTS_V[NPARTICLES]; +double LIKELIHOOD_V[NPARTICLES]; +double ARRAYX_V[NPARTICLES]; +double ARRAYY_V[NPARTICLES]; +double XJ_V[NPARTICLES]; +double YJ_V[NPARTICLES]; +double CDF_V[NPARTICLES]; +double U_V[NPARTICLES]; +double OBJXY_V[DIAMETER * DIAMETER]; +int IND_V[DIAMETER * DIAMETER * NPARTICLES]; + +void particleFilter(int *I, int IszX, int IszY, int Nfr, int *seed, + int Nparticles, int *disk, double *objxy, double *weights, + double *likelihood, double *arrayX, double *arrayY, + double *xj, double *yj, double *CDF, double *u, int *ind) { + + int max_size = IszX * IszY * Nfr; + start_timer(); + // original particle centroid + double xe = roundDouble(IszY / 2.0); + double ye = roundDouble(IszX / 2.0); + + // expected object locations, compared to center + int radius = 5; + int diameter = radius * 2 - 1; + strelDisk(disk, radius); + int countOnes = 0; + int x, y; + for (x = 0; x < diameter; x++) { + for (y = 0; y < diameter; y++) { + if (disk[x * diameter + y] == 1) + countOnes++; + } + } + + // printf("countOnes = %ld \n",countOnes); // 69 + + getneighbors(disk, objxy, radius); + + stop_timer(); + printf("TIME TO GET NEIGHBORS TOOK: %ld\n", get_timer()); + start_timer(); + // initial weights are all equal (1/Nparticles) + // #pragma omp parallel for shared(weights, Nparticles) private(x) + for (x = 0; x < Nparticles; x++) { + weights[x] = 1 / ((double)(Nparticles)); + } + stop_timer(); + printf("TIME TO GET WEIGHTSTOOK: %ld\n", get_timer()); + // initial likelihood to 0.0 + start_timer(); + // #pragma omp parallel for shared(arrayX, arrayY, xe, ye) private(x) + for (x = 0; x < Nparticles; x++) { + arrayX[x] = xe; + arrayY[x] = ye; + } + int k; + + stop_timer(); + printf("TIME TO SET ARRAYS TOOK: %ld\n", get_timer()); + int indX, indY; + for (k = 1; k < Nfr; k++) { + start_timer(); + // apply motion model + // draws sample from motion model (random walk). The only prior information + // is that the object moves 2x as fast as in the y direction + // #pragma omp parallel for shared(arrayX, arrayY, Nparticles, seed) + // private(x) + for (x = 0; x < Nparticles; x++) { + arrayX[x] += 1 + 5 * randn(seed, x); + arrayY[x] += -2 + 2 * randn(seed, x); + } + stop_timer(); + printf("TIME TO SET ERROR TOOK: %ld\n", get_timer()); + // particle filter likelihood + // #pragma omp parallel for shared(likelihood, I, arrayX, arrayY, objxy, + // ind) + // private(x, y, indX, indY) + start_timer(); + for (x = 0; x < Nparticles; x++) { + // compute the likelihood: remember our assumption is that you know + // foreground and the background image intensity distribution. + // Notice that we consider here a likelihood ratio, instead of + // p(z|x). It is possible in this case. why? a hometask for you. + // calc ind + for (y = 0; y < countOnes; y++) { + indX = roundDouble(arrayX[x]) + objxy[y * 2 + 1]; + indY = roundDouble(arrayY[x]) + objxy[y * 2]; + ind[x * countOnes + y] = abs(indX * IszY * Nfr + indY * Nfr + k); + if (ind[x * countOnes + y] >= max_size) + ind[x * countOnes + y] = 0; + } + likelihood[x] = 0; + for (y = 0; y < countOnes; y++) + likelihood[x] += (pow((I[ind[x * countOnes + y]] - 100), 2) - + pow((I[ind[x * countOnes + y]] - 228), 2)) / + 50.0; + likelihood[x] = likelihood[x] / ((double)countOnes); + } + stop_timer(); + printf("TIME TO GET LIKELIHOODS TOOK: %ld\n", get_timer()); + // update & normalize weights + // using equation (63) of Arulampalam Tutorial + // #pragma omp parallel for shared(Nparticles, weights, likelihood) + // private(x) + start_timer(); + for (x = 0; x < Nparticles; x++) { + weights[x] = weights[x] * exp(likelihood[x]); + } + stop_timer(); + printf("TIME TO GET EXP TOOK: %ld\n", get_timer()); + double sumWeights = 0; + // #pragma omp parallel for private(x) reduction(+:sumWeights) + start_timer(); + for (x = 0; x < Nparticles; x++) { + sumWeights += weights[x]; + } + stop_timer(); + printf("TIME TO SUM WEIGHTS TOOK: %ld\n", get_timer()); + // #pragma omp parallel for shared(sumWeights, weights) private(x) + start_timer(); + for (x = 0; x < Nparticles; x++) { + weights[x] = weights[x] / sumWeights; + } + stop_timer(); + printf("TIME TO NORMALIZE WEIGHTS TOOK: %ld\n", get_timer()); + xe = 0; + ye = 0; + // estimate the object location by expected values + // #pragma omp parallel for private(x) reduction(+:xe, ye) + start_timer(); + for (x = 0; x < Nparticles; x++) { + xe += arrayX[x] * weights[x]; + ye += arrayY[x] * weights[x]; + } + stop_timer(); + printf("TIME TO MOVE OBJECT TOOK: %ld\n", get_timer()); + start_timer(); + printf("XE: %lf\n", xe); + printf("YE: %lf\n", ye); + double distance = sqrt(pow((double)(xe - (int)roundDouble(IszY / 2.0)), 2) + + pow((double)(ye - (int)roundDouble(IszX / 2.0)), 2)); + printf("%lf\n", distance); + // display(hold off for now) + + // pause(hold off for now) + + // resampling + + CDF[0] = weights[0]; + for (x = 1; x < Nparticles; x++) { + CDF[x] = weights[x] + CDF[x - 1]; + } + stop_timer(); + printf("TIME TO CALC CUM SUM TOOK: %ld\n", get_timer()); + start_timer(); + double u1 = (1 / ((double)(Nparticles))) * randu(seed, 0); + // #pragma omp parallel for shared(u, u1, Nparticles) private(x) + for (x = 0; x < Nparticles; x++) { + u[x] = u1 + x / ((double)(Nparticles)); + } + stop_timer(); + printf("TIME TO CALC U TOOK: %ld\n", get_timer()); + start_timer(); + int j, i; + + // #pragma omp parallel for shared(CDF, Nparticles, xj, yj, u, arrayX, + // arrayY) private(i, j) + for (j = 0; j < Nparticles; j++) { + i = findIndex(CDF, Nparticles, u[j]); + if (i == -1) + i = Nparticles - 1; + // printf("%ld ", i); + xj[j] = arrayX[i]; + yj[j] = arrayY[i]; + } + // printf("\n"); + + stop_timer(); + printf("TIME TO CALC NEW ARRAY X AND Y TOOK: %ld\n", get_timer()); + + // #pragma omp parallel for shared(weights, Nparticles) private(x) + start_timer(); + for (x = 0; x < Nparticles; x++) { + // reassign arrayX and arrayY + arrayX[x] = xj[x]; + arrayY[x] = yj[x]; + weights[x] = 1 / ((double)(Nparticles)); + } + stop_timer(); + printf("TIME TO RESET WEIGHTS TOOK: %ld\n", get_timer()); + } +} + +int64_t LOCATIONS[NPARTICLES]; +void particleFilter_vector(int *I, int IszX, int IszY, int Nfr, int *seed, + long int *seed_64, int Nparticles, int *disk, + double *objxy, double *weights, double *likelihood, + double *arrayX, double *arrayY, double *xj, + double *yj, double *CDF, double *u, int *ind) { + + int max_size = IszX * IszY * Nfr; + int radius = 5; + int diameter = radius * 2 - 1; + + start_timer(); + // original particle centroid + double xe = roundDouble(IszY / 2.0); + double ye = roundDouble(IszX / 2.0); + + strelDisk(disk, radius); + int countOnes = 0; + int x, y; + for (x = 0; x < diameter; x++) { + for (y = 0; y < diameter; y++) { + if (disk[x * diameter + y] == 1) + countOnes++; + } + } + + // printf("countOnes = %ld \n",countOnes); // 69 + + getneighbors(disk, objxy, radius); + + stop_timer(); + printf("TIME TO GET NEIGHBORS TOOK: %ld\n", get_timer()); + // initial weights are all equal (1/Nparticles) + start_timer(); + // #pragma omp parallel for shared(weights, Nparticles) private(x) + /* + for(x = 0; x < Nparticles; x++){ + weights[x] = 1/((double)(Nparticles)); + }*/ + // size_t gvl = __builtin_epi_vsetvl(Nparticles, __epi_e64, + // __epi_m1); + size_t gvl = vsetvl_e64m1(Nparticles); // PLCT + + vfloat64m1_t xweights = vfmv_v_f_f64m1(1.0 / ((double)(Nparticles)), gvl); + for (x = 0; x < Nparticles; x = x + gvl) { + // gvl = __builtin_epi_vsetvl(Nparticles-x, __epi_e64, __epi_m1); + gvl = vsetvl_e64m1(Nparticles - x); // PLCT + + vse64_v_f64m1(&weights[x], xweights, gvl); + } + asm volatile("fence" ::); + + stop_timer(); + printf("TIME TO GET WEIGHTSTOOK: %ld\n", get_timer()); + start_timer(); + // initial likelihood to 0.0 + + /* + //#pragma omp parallel for shared(arrayX, arrayY, xe, ye) private(x) + for(x = 0; x < Nparticles; x++){ + arrayX[x] = xe; + arrayY[x] = ye; + } + */ + // gvl = __builtin_epi_vsetvl(Nparticles, __epi_e64, __epi_m1); + gvl = vsetvl_e64m1(Nparticles); // PLCT + vfloat64m1_t xArrayX = vfmv_v_f_f64m1(xe, gvl); + vfloat64m1_t xArrayY = vfmv_v_f_f64m1(ye, gvl); + for (int i = 0; i < Nparticles; i = i + gvl) { + // gvl = __builtin_epi_vsetvl(Nparticles-i, __epi_e64, __epi_m1); + gvl = vsetvl_e64m1(Nparticles - i); // PLCT + vse64_v_f64m1(&arrayX[i], xArrayX, gvl); + vse64_v_f64m1(&arrayY[i], xArrayY, gvl); + } + asm volatile("fence" ::); + + vfloat64m1_t xAux; + + int k; + stop_timer(); + printf("TIME TO SET ARRAYS TOOK: %ld\n", get_timer()); + int indX, indY; + for (k = 1; k < Nfr; k++) { + start_timer(); + // apply motion model + // draws sample from motion model (random walk). The only prior information + // is that the object moves 2x as fast as in the y direction + // gvl = __builtin_epi_vsetvl(Nparticles, __epi_e64, __epi_m1); + gvl = vsetvl_e64m1(Nparticles); // PLCT + for (x = 0; x < Nparticles; x = x + gvl) { + // gvl = __builtin_epi_vsetvl(Nparticles-x, __epi_e64, __epi_m1); + gvl = vsetvl_e64m1(Nparticles - x); // PLCT + xArrayX = vle64_v_f64m1(&arrayX[x], gvl); + asm volatile("fence" ::); + xAux = randn_vector(seed_64, x, gvl); + asm volatile("fence" ::); + xAux = vfmul_vv_f64m1(xAux, vfmv_v_f_f64m1(5.0, gvl), gvl); + xAux = vfadd_vv_f64m1(xAux, vfmv_v_f_f64m1(1.0, gvl), gvl); + xArrayX = vfadd_vv_f64m1(xAux, xArrayX, gvl); + vse64_v_f64m1(&arrayX[x], xArrayX, gvl); + + xArrayY = vle64_v_f64m1(&arrayY[x], gvl); + asm volatile("fence" ::); + xAux = randn_vector(seed_64, x, gvl); + asm volatile("fence" ::); + xAux = vfmul_vv_f64m1(xAux, vfmv_v_f_f64m1(2.0, gvl), gvl); + xAux = vfadd_vv_f64m1(xAux, vfmv_v_f_f64m1(-2.0, gvl), gvl); + xArrayY = vfadd_vv_f64m1(xAux, xArrayY, gvl); + vse64_v_f64m1(&arrayY[x], xArrayY, gvl); + } + asm volatile("fence" ::); + /* + //#pragma omp parallel for shared(arrayX, arrayY, Nparticles, seed) + private(x) + for(x = 0; x < Nparticles; x++){ + arrayX[x] += 1 + 5*randn(seed, x); + arrayY[x] += -2 + 2*randn(seed, x); + } + */ + stop_timer(); + printf("TIME TO SET ERROR TOOK: %ld\n", get_timer()); + start_timer(); + // particle filter likelihood + // #pragma omp parallel for shared(likelihood, I, arrayX, arrayY, objxy, + // ind) + // private(x, y, indX, indY) + for (x = 0; x < Nparticles; x++) { + // compute the likelihood: remember our assumption is that you know + // foreground and the background image intensity distribution. + // Notice that we consider here a likelihood ratio, instead of + // p(z|x). It is possible in this case. why? a hometask for you. + // calc ind + for (y = 0; y < countOnes; y++) { + indX = roundDouble(arrayX[x]) + objxy[y * 2 + 1]; + indY = roundDouble(arrayY[x]) + objxy[y * 2]; + ind[x * countOnes + y] = abs(indX * IszY * Nfr + indY * Nfr + k); + if (ind[x * countOnes + y] >= max_size) + ind[x * countOnes + y] = 0; + } + likelihood[x] = 0; + for (y = 0; y < countOnes; y++) + likelihood[x] += (pow((I[ind[x * countOnes + y]] - 100), 2) - + pow((I[ind[x * countOnes + y]] - 228), 2)) / + 50.0; + likelihood[x] = likelihood[x] / ((double)countOnes); + } + stop_timer(); + printf("TIME TO GET LIKELIHOODS TOOK: %ld\n", get_timer()); + start_timer(); + // update & normalize weights + // using equation (63) of Arulampalam Tutorial + // #pragma omp parallel for shared(Nparticles, weights, likelihood) + // private(x) + for (x = 0; x < Nparticles; x++) { + weights[x] = weights[x] * exp(likelihood[x]); + } + stop_timer(); + printf("TIME TO GET EXP TOOK: %ld\n", get_timer()); + start_timer(); + double sumWeights = 0; + // #pragma omp parallel for private(x) reduction(+:sumWeights) + for (x = 0; x < Nparticles; x++) { + sumWeights += weights[x]; + } + stop_timer(); + printf("TIME TO SUM WEIGHTS TOOK: %ld\n", get_timer()); + start_timer(); + // #pragma omp parallel for shared(sumWeights, weights) private(x) + for (x = 0; x < Nparticles; x++) { + weights[x] = weights[x] / sumWeights; + } + stop_timer(); + printf("TIME TO NORMALIZE WEIGHTS TOOK: %ld\n", get_timer()); + start_timer(); + xe = 0; + ye = 0; + // estimate the object location by expected values + // #pragma omp parallel for private(x) reduction(+:xe, ye) + for (x = 0; x < Nparticles; x++) { + xe += arrayX[x] * weights[x]; + ye += arrayY[x] * weights[x]; + } + stop_timer(); + printf("TIME TO MOVE OBJECT TOOK: %ld\n", get_timer()); + start_timer(); + printf("XE: %lf\n", xe); + printf("YE: %lf\n", ye); + double distance = sqrt(pow((double)(xe - (int)roundDouble(IszY / 2.0)), 2) + + pow((double)(ye - (int)roundDouble(IszX / 2.0)), 2)); + printf("%lf\n", distance); + // display(hold off for now) + + // pause(hold off for now) + + // resampling + + CDF[0] = weights[0]; + for (x = 1; x < Nparticles; x++) { + CDF[x] = weights[x] + CDF[x - 1]; + } + stop_timer(); + printf("TIME TO CALC CUM SUM TOOK: %ld\n", get_timer()); + start_timer(); + double u1 = (1 / ((double)(Nparticles))) * randu(seed, 0); + // #pragma omp parallel for shared(u, u1, Nparticles) private(x) + for (x = 0; x < Nparticles; x++) { + u[x] = u1 + x / ((double)(Nparticles)); + } + stop_timer(); + printf("TIME TO CALC U TOOK: %ld\n", get_timer()); + start_timer(); + + int j, i; + + vbool64_t xComp; + vint64m1_t xMask; + + vfloat64m1_t xCDF; + vfloat64m1_t xU; + vint64m1_t xArray; + + long int vector_complete; + long int *locations = (long int *)LOCATIONS; + long int valid; + // gvl = __builtin_epi_vsetvl(Nparticles, __epi_e64, __epi_m1); + gvl = vsetvl_e64m1(Nparticles); // PLCT + for (i = 0; i < Nparticles; i = i + gvl) { + // gvl = __builtin_epi_vsetvl(Nparticles-i, __epi_e64, __epi_m1); + gvl = vsetvl_e64m1(Nparticles - i); // PLCT + vector_complete = 0; + xMask = vmv_v_x_i64m1(0, gvl); + xArray = vmv_v_x_i64m1(Nparticles - 1, gvl); + xU = vle64_v_f64m1(&u[i], gvl); + for (j = 0; j < Nparticles; j++) { + xCDF = vfmv_v_f_f64m1(CDF[j], gvl); + xComp = vmfge_vv_f64m1_b64(xCDF, xU, gvl); + xComp = vmseq_vx_i64m1_b64( + vxor_vv_i64m1(vmerge_vxm_i64m1(xComp, vundefined_i64m1(), 1, gvl), + xMask, gvl), + 1, gvl); + valid = vfirst_m_b64(xComp, gvl); + if (valid != -1) { + xArray = vmerge_vvm_i64m1(xComp, xArray, vmv_v_x_i64m1(j, gvl), gvl); + xMask = vor_vv_i64m1( + vmerge_vxm_i64m1(xComp, vundefined_i64m1(), 1, gvl), xMask, gvl); + vector_complete = vcpop_m_b64(vmseq_vx_i64m1_b64(xMask, 1, gvl), gvl); + } + if (vector_complete == (int)gvl) { + break; + } + // asm volatile ("fence"::); + } + vse64_v_i64m1(&locations[i], xArray, gvl); + } + asm volatile("fence" ::); + // for(i = 0; i < Nparticles; i++) { printf("%ld ", locations[i]); } + // printf("\n"); + + // #pragma omp parallel for shared(CDF, Nparticles, xj, yj, u, arrayX, + // arrayY) private(i, j) + for (j = 0; j < Nparticles; j++) { + i = locations[j]; + xj[j] = arrayX[i]; + yj[j] = arrayY[i]; + } + // for(j = 0; j < Nparticles; j++){ printf("%lf ", xj[i]); } printf("\n"); + // for(j = 0; j < Nparticles; j++){ printf("%lf ", yj[i]); } printf("\n"); + + stop_timer(); + printf("TIME TO CALC NEW ARRAY X AND Y TOOK: %ld\n", get_timer()); + start_timer(); + + // #pragma omp parallel for shared(weights, Nparticles) private(x) + for (x = 0; x < Nparticles; x++) { + // reassign arrayX and arrayY + arrayX[x] = xj[x]; + arrayY[x] = yj[x]; + weights[x] = 1 / ((double)(Nparticles)); + } + stop_timer(); + printf("TIME TO RESET WEIGHTS TOOK: %ld\n", get_timer()); + } +} + +int main() { + + int error; + + // char *usage = "-x -y -z -np "; + int IszX, IszY, Nfr, Nparticles; + + IszX = ISZX; + IszY = ISZY; + Nfr = NFR; + Nparticles = NPARTICLES; + + // Establish seed + int i; + for (i = 0; i < Nparticles; i++) { + seed[i] = Seed * i; + } + for (i = 0; i < Nparticles; i++) { + seed_64[i] = (long int)seed[i]; + } + // Call Video sequence and measure cycles + start_timer(); + videoSequence(I, IszX, IszY, Nfr, seed); + stop_timer(); + printf("Video sequence took %ld cycles.\n", get_timer()); + + // Call scalar particle filter and measure cycles + int end = get_timer(); + start_timer(); + particleFilter(I, IszX, IszY, Nfr, seed, Nparticles, (int *)DISK, + (double *)OBJXY, (double *)WEIGHTS, (double *)LIKELIHOOD, + (double *)ARRAYX, (double *)ARRAYY, (double *)XJ, (double *)YJ, + (double *)CDF, (double *)U, (int *)IND); + stop_timer(); + end = get_timer() - end; + printf("Scalar particle filter took %ld cycles.\n", end); + // Call vector particle filter and measure cycles + start_timer(); + particleFilter_vector(I, IszX, IszY, Nfr, seed, seed_64, Nparticles, + (int *)DISK_V, (double *)OBJXY_V, (double *)WEIGHTS_V, + (double *)LIKELIHOOD_V, (double *)ARRAYX_V, + (double *)ARRAYY_V, (double *)XJ_V, (double *)YJ_V, + (double *)CDF_V, (double *)U_V, (int *)IND_V); + stop_timer(); + end = get_timer() - end; + printf("Vector particle filter took %ld cycles.\n", end); + + // Check results only after the benchmark works + // error = check_result(); + error = 0; + + return error; +}