-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimate.py
74 lines (66 loc) · 2.38 KB
/
estimate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from typing import Dict, Any, Callable
import re
import subprocess
import tempfile
import pathlib
import concurrent.futures
import os
import functools
import typer
import tqdm
mungojerrie_path = "mungojerrie/build/mungojerrie"
pattern = re.compile(rf"PAC Probability for tol (\d+(\.\d*)?) is: (?P<satprob>\d+(\.\d*)?)±(?P<std>\d+(\.\d*)?)")
def estimate_pac_probability(epsilon: float,
model: str,
min_num_samples: int = 100,
max_est_std: float = 1e-3,
reward_type: str = "multi-discount",
discount: float = 0.99999,
gammaB: float=0.99,
learn="Q",
ep_number: int = 100,
tolerance=0.,
model_params: Dict[str, Any] = None):
if model_params is None:
model_params = {}
with tempfile.NamedTemporaryFile(mode='w+') as tmp:
model_str = pathlib.Path(f"{model}.prism").read_text()
model_str = model_str.format(**model_params)
tmp.write(model_str)
tmp.flush()
output = subprocess.check_output(
[
mungojerrie_path, tmp.name,
"--ltl-file", f"{model}.ltl",
"--est-pac",
"--reward-type", reward_type,
"--discount", str(discount),
"--gammaB", str(gammaB),
"--learn", learn,
"--tolerance", str(tolerance),
"--ep-number", str(ep_number),
"--est-pac-probability-min-samples", str(min_num_samples),
"--est-pac-max-std", str(max_est_std),
"--est-pac-epsilon", str(epsilon),
# "--seed", str(2),
],
# stderr=subprocess.DEVNULL
)
output = output.decode("utf-8")
print(output)
match = pattern.search(output)
pac_prob = float(match.group("satprob"))
pac_prob_std = float(match.group("std"))
return pac_prob, pac_prob_std
def binsearch_ep_number(f, n, interval):
lb, ub = interval
lb_val, lb_val_var =f(lb)
prob = estimate_pac_probability(
epsilon=0.001,
model="models/gltl_paper_fig2",
model_params=dict(P1=1, P2=0.99),
ep_number=10000,
min_num_samples=1000,
max_est_std=0.05,
)
print(prob)