This repository has been archived by the owner on Jul 6, 2019. It is now read-only.
forked from Nik-U/pbc
-
Notifications
You must be signed in to change notification settings - Fork 1
/
element_misc.go
122 lines (111 loc) · 3.88 KB
/
element_misc.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
// Copyright © 2015 Nik Unger
//
// This file is part of The PBC Go Wrapper.
//
// The PBC Go Wrapper is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or (at your
// option) any later version.
//
// The PBC Go Wrapper is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
// License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with The PBC Go Wrapper. If not, see <http://www.gnu.org/licenses/>.
//
// The PBC Go Wrapper makes use of The PBC library. The PBC Library and its use
// are covered under the terms of the GNU Lesser General Public License
// version 3, or (at your option) any later version.
package pbc
/*
#include "external/pbc/include/pbc.h"
*/
import "C"
import "math/big"
// Pairing returns the pairing associated with this element.
func (el *Element) Pairing() *Pairing { return el.pairing }
// NewFieldElement creates a new element in the same field as el. The new
// element will be unchecked if and only if el is unchecked.
func (el *Element) NewFieldElement() *Element {
newElement := makeUncheckedElement(el.pairing, false, G1)
C.element_init_same_as(newElement.cptr, el.cptr)
if el.checked {
newElement.checked = true
newElement.fieldPtr = el.fieldPtr
newElement.isInteger = el.isInteger
}
return newElement
}
// Len returns the length of this element. For points, this is the number of
// coordinates. For polynomials, it is the number of coefficients. For infinite
// points, it is zero. For all other values, it is zero.
func (el *Element) Len() int {
return int(C.element_item_count(el.cptr))
}
// Item returns the specified sub-element. For points, this returns a
// coordinate. For polynomials, it returns a coefficient. For other elements,
// this operation is invalid. i must be greater than or equal to 0 and less
// than el.Len(). Bounds checking is only performed for checked elements.
func (el *Element) Item(i int) *Element {
if el.checked && i >= el.Len() {
panic(ErrOutOfRange)
}
newElement := &Element{
pairing: el.pairing,
cptr: C.element_item(el.cptr, C.int(i)),
}
if newElement.cptr == nil {
panic(ErrOutOfRange)
}
if el.checked {
newElement.fieldPtr = newElement.cptr.field
newElement.isInteger = (newElement.Len() == 0)
}
return newElement
}
// X returns the X coordinate of el. Equivalent to el.Item(0).BigInt().
//
// Requirements:
// el must be a point on an elliptic curve.
func (el *Element) X() *big.Int {
return el.Item(0).BigInt()
}
// Y returns the Y coordinate of el. Equivalent to el.Item(1).BigInt().
//
// Requirements:
// el must be a point on an elliptic curve.
func (el *Element) Y() *big.Int {
return el.Item(1).BigInt()
}
// BruteForceDL sets el such that g^el = h using brute force.
//
// Requirements:
// g and h must be from the same algebraic structure; and
// el must be an element of an integer mod ring (e.g., Zn for some n, typically
// the order of the algebraic structure that g lies in).
func (el *Element) BruteForceDL(g, h *Element) *Element {
if el.checked {
el.checkInteger()
g.ensureChecked()
g.checkCompatible(h)
}
C.element_dlog_brute_force(el.cptr, g.cptr, h.cptr)
return el
}
// PollardRhoDL sets el such that g^el = h using Pollard rho method.
//
// Requirements:
// g and h must be from the same algebraic structure; and
// el must be an element of an integer mod ring (e.g., Zn for some n, typically
// the order of the algebraic structure that g lies in).
func (el *Element) PollardRhoDL(g, h *Element) *Element {
if el.checked {
el.checkInteger()
g.ensureChecked()
g.checkCompatible(h)
}
C.element_dlog_pollard_rho(el.cptr, g.cptr, h.cptr)
return el
}