I guess I should define the terms first:
- small letters denote variable name, capital letters denote terms (exceptions below).
-
$\mathbf{V}$ denotes the set of all variable names. -
$\mathbf{F}$ denotes the set of all function names. -
$\mathbf{T}$ denotes the set of all terms. - term definition:
-
$x \in \mathbf{V} \Rightarrow x \in \mathbf{T}$ . -
$f \in \mathbf{F} \land A_1, A_2, \ldots, A_n \in \mathbf{T} \Rightarrow f(A_1, A_2, \ldots, A_n) \in \mathbf{T}$ .
-
-
$\Gamma$ and$\Delta$ denote sets$X_0, X_1, \ldots, X_n$ of assumptions and conclusions respectively.- note: both are effectively joined using conjunctions unlike normal sequent calculi.
- the substitution algorithm
$A[Y/x]$ is defined as follows:-
${\displaystyle {x[Y/x] = Y, x \in \mathbf{T}}}$ . -
${\displaystyle {y[Y/x] = y, x \neq y, x, y \in \mathbf{T}}}$ . -
${\displaystyle {f(A_1, A_2, \ldots, A_n)[Y/x] = f(A_1[Y/x], A_2[Y/x], \ldots, A_n[Y/x])}}$ . -
${\displaystyle {\Gamma[Y/x] = \set{a[Y/x] : a \in \Gamma}}}$ .
-
The heart of nyaya is a single operator,
1.
2.
3.
4.
(where
That's it!