Skip to content

Latest commit

 

History

History
27 lines (24 loc) · 1.66 KB

foundations.md

File metadata and controls

27 lines (24 loc) · 1.66 KB

Definition

I guess I should define the terms first:

  • small letters denote variable name, capital letters denote terms (exceptions below).
  • $\mathbf{V}$ denotes the set of all variable names.
  • $\mathbf{F}$ denotes the set of all function names.
  • $\mathbf{T}$ denotes the set of all terms.
  • term definition:
    1. $x \in \mathbf{V} \Rightarrow x \in \mathbf{T}$.
    2. $f \in \mathbf{F} \land A_1, A_2, \ldots, A_n \in \mathbf{T} \Rightarrow f(A_1, A_2, \ldots, A_n) \in \mathbf{T}$.
  • $\Gamma$ and $\Delta$ denote sets $X_0, X_1, \ldots, X_n$ of assumptions and conclusions respectively.
    • note: both are effectively joined using conjunctions unlike normal sequent calculi.
  • the substitution algorithm $A[Y/x]$ is defined as follows:
    1. ${\displaystyle {x[Y/x] = Y, x \in \mathbf{T}}}$.
    2. ${\displaystyle {y[Y/x] = y, x \neq y, x, y \in \mathbf{T}}}$.
    3. ${\displaystyle {f(A_1, A_2, \ldots, A_n)[Y/x] = f(A_1[Y/x], A_2[Y/x], \ldots, A_n[Y/x])}}$.
    4. ${\displaystyle {\Gamma[Y/x] = \set{a[Y/x] : a \in \Gamma}}}$.

Foundations

The heart of nyaya is a single operator, $\vdash$, which is governed by the following axioms:
1. ${\displaystyle {{} \over \Gamma \vdash \Gamma}}$ (reflexivity)
2. ${\displaystyle {\Gamma \vdash \Delta, \Delta ' \over \Gamma \vdash \Delta}}$ (selection)
3. ${\displaystyle {\Gamma \vdash \Delta \over \Gamma[Y/x] \vdash \Delta[Y/x]}}$ (substitution)
4. ${\displaystyle {\Gamma \vdash \Delta \qquad \qquad \Delta \vdash \Delta ' \over \Gamma \vdash \Delta, \Delta '}}$ (transitivity)

(where $Y \in \mathbf{T}$, $x \in \mathbf{V}$, and $\Delta, \Delta '$ denotes $\Delta \cup \Delta '$)
That's it!