-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCAR.py
111 lines (101 loc) · 4.58 KB
/
CAR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import numpy as np
import math as m
import cv2
from key_check import key_press
from controller import * # backend that contains the code for manual control
from model_runner import model_runner # backend that contains the code for running the trained models.
import threading # we use threading to run stuff asynchronously
import time
class driver():
def __init__(self,manual_control='keyboard',run_NN=False,model="steering"):
self.init = False # if the state has been initialized
self.training_data = [] # empty list for training data
self.Finish = False # whether we've finished recording or not
self.Rec = False # whether we're recording or not
self.HEIGHT = 240 #image dimensions
self.WIDTH = 320
self.CHANNELS = 1 #number of channels in the input image
self.WHEELBASE = 1.56 # wheelbase of the car
self.dt = 0 # time step
self.cam_img = None
print('INFO message: using keyboard control')
self.input = keyboard_control()
proc_remote_control = threading.Thread(target=self.input.read_loop) # daemon -> kills thread when main program is stopped
proc_remote_control.setDaemon(True)
proc_remote_control.start()
self.NN = None
#set model type:
if(run_NN):
if(model == "steering"):
self.NN = model_runner('steering',self.WHEELBASE)
proc_model_runner = threading.Thread(target=self.NN.run_model) # daemon -> kills thread when main program is stopped
proc_model_runner.setDaemon(True)
proc_model_runner.start()
elif(model == "bezier"):
self.NN = model_runner('bezier',self.WHEELBASE)
proc_model_runner = threading.Thread(target=self.NN.run_model) # daemon -> kills thread when main program is stopped
proc_model_runner.setDaemon(True)
proc_model_runner.start()
elif(model=="image-image"):
self.NN = model_runner('image_image',self.WHEELBASE)
proc_model_runner = threading.Thread(target=self.NN.run_model) # daemon -> kills thread when main program is stopped
proc_model_runner.setDaemon(True)
proc_model_runner.start()
else:
print("incorrect model type!")
else:
print("running manual. no neural net initialized")
self.now = time.time()
def initialize(self, X, Y, head, speed,WB):
self.X = X
self.Y = Y
self.last_X = X
self.last_Y = Y
self.mh = None
self.speed = speed
self.WB = WB
self.init = True
self.cam_img = None
def calc_head(self): # calculates heading of the car by taking inverse tangent of dy/dx (movement)
dy = self.Y - self.last_Y
dx = self.X - self.last_X
self.last_Y = self.Y
self.last_X = self.X
if(m.fabs(dx)<0.001 and m.fabs(dy)<0.001):
self.mh = None
else:
self.mh = m.atan2(dy,dx)
# print(self.mh*57.3)
def update_state(self,X,Y,speed,steer,image_C,image_L,image_R,time_stamp):
self.X = X
self.Y = Y
self.speed = speed
self.calc_head()
size = image_C.shape[0]
# how much we want to trim the images. The image that comes in is a 320x320 image. we need 320x240
top = size//8
bottom = (size*7)//8
self.cam_img = image_C[top:bottom,:]
image_L = image_L[top:bottom,:]
image_R = image_R[top:bottom,:]
pos = [self.X,self.Y,self.mh,self.speed,steer] # pos refers to present operating state
self.dt = time.time()-self.now
self.now = time.time()
#if neural net exists, run it
if(self.NN):
self.NN.update_model_input(self.cam_img, self.speed, self.input.th, self.dt,time_stamp)
if(key_press() == ['O'] ):
print("recording aborted")
self.Rec = False
self.Finish = True
if(key_press() == ['K'] ):
if self.Rec:
print("recording paused")
self.Rec = False
time.sleep(0.5)
elif not self.Rec :
print("recording continued")
self.Rec = True
time.sleep(0.5)
if(self.mh is not None and self.Rec == True):
self.training_data.append([self.cam_img,image_L,image_R,pos]) # if recording and car is moving, append data to the list.