-
Notifications
You must be signed in to change notification settings - Fork 0
/
find_best_attributes_surrogate_openML_multi.py
271 lines (196 loc) · 10.4 KB
/
find_best_attributes_surrogate_openML_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# main imports
import os
import sys
import argparse
import pandas as pd
import numpy as np
import logging
import datetime
import random
# model imports
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
import joblib
import sklearn
import sklearn.svm as svm
from sklearn.utils import shuffle
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import MinMaxScaler
# modules and config imports
sys.path.insert(0, '') # trick to enable import of main folder module
import custom_config as cfg
import models as mdl
from optimization.ILSMultiSurrogate import ILSMultiSurrogate
from macop.solutions.BinarySolution import BinarySolution
from macop.operators.mutators.SimpleMutation import SimpleMutation
from macop.operators.mutators.SimpleBinaryMutation import SimpleBinaryMutation
from macop.operators.crossovers.SimpleCrossover import SimpleCrossover
from macop.operators.crossovers.RandomSplitCrossover import RandomSplitCrossover
from macop.operators.policies.UCBPolicy import UCBPolicy
from macop.callbacks.BasicCheckpoint import BasicCheckpoint
from macop.callbacks.UCBCheckpoint import UCBCheckpoint
from optimization.callbacks.SurrogateCheckpoint import SurrogateCheckpoint
from optimization.callbacks.MultiSurrogateCheckpoint import MultiSurrogateCheckpoint
from sklearn.ensemble import RandomForestClassifier
# avoid display of warning
def warn(*args, **kwargs):
pass
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.warn = warn
# default validator
def validator(solution):
# at least 5 attributes
if list(solution._data).count(1) < 2:
return False
return True
def train_model(X_train, y_train):
#print ('Creating model...')
# here use of SVM with grid search CV
Cs = [0.001, 0.01, 0.1, 1, 10, 100]
gammas = [0.001, 0.01, 0.1,10, 100]
param_grid = {'kernel':['rbf'], 'C': Cs, 'gamma' : gammas}
svc = svm.SVC(probability=True, class_weight='balanced')
#clf = GridSearchCV(svc, param_grid, cv=5, verbose=1, scoring=my_accuracy_scorer, n_jobs=-1)
clf = GridSearchCV(svc, param_grid, cv=4, verbose=0, n_jobs=-1)
clf.fit(X_train, y_train)
model = clf.best_estimator_
return model
def loadDataset(filename):
########################
# 1. Get and prepare data
########################
dataset = pd.read_csv(filename, sep=',')
# change label as common
min_label_value = min(dataset.iloc[:, -1])
max_label_value = max(dataset.iloc[:, -1])
dataset.iloc[:, -1] = dataset.iloc[:, -1].replace(min_label_value, 0)
dataset.iloc[:, -1] = dataset.iloc[:, -1].replace(max_label_value, 1)
X_dataset = dataset.iloc[:, :-1]
y_dataset = dataset.iloc[:, -1]
problem_size = len(X_dataset.columns)
# min/max normalisation over feature
# create a scaler object
scaler = MinMaxScaler()
# fit and transform the data
X_dataset = np.array(pd.DataFrame(scaler.fit_transform(X_dataset), columns=X_dataset.columns))
# prepare train, validation and test datasets
X_train, X_test, y_train, y_test = train_test_split(X_dataset, y_dataset, test_size=0.3, shuffle=True)
return X_train, y_train, X_test, y_test, problem_size
def main():
parser = argparse.ArgumentParser(description="Train and find best filters to use for model")
parser.add_argument('--data', type=str, help='open ml dataset filename prefix', required=True)
parser.add_argument('--every_ls', type=int, help='train every ls surrogate model', default=50) # default value
parser.add_argument('--k_division', type=int, help='number of expected sub surrogate model', default=20)
parser.add_argument('--k_dynamic', type=int, help='specify if indices for each sub surrogate model are changed or not for each training', default=0, choices=[0, 1])
parser.add_argument('--k_random', type=int, help='specify if split is random or not', default=1, choices=[0, 1])
parser.add_argument('--ils', type=int, help='number of total iteration for ils algorithm', required=True)
parser.add_argument('--ls', type=int, help='number of iteration for Local Search algorithm', required=True)
parser.add_argument('--generate_only', type=int, help='number of iteration for Local Search algorithm', default=0, choices=[0, 1])
parser.add_argument('--output', type=str, help='output surrogate model name')
args = parser.parse_args()
p_data_file = args.data
p_every_ls = args.every_ls
p_k_division = args.k_division
p_k_dynamic = bool(args.k_dynamic)
p_k_random = bool(args.k_random)
p_ils_iteration = args.ils
p_ls_iteration = args.ls
p_generate_only = bool(args.generate_only)
p_output = args.output
# load data from file and get problem size
X_train, y_train, X_test, y_test, problem_size = loadDataset(p_data_file)
# create `logs` folder if necessary
if not os.path.exists(cfg.output_logs_folder):
os.makedirs(cfg.output_logs_folder)
logging.basicConfig(format='%(asctime)s %(message)s', filename='data/logs/{0}.log'.format(p_output), level=logging.DEBUG)
# init solution (`n` attributes)
def init():
return BinarySolution([], problem_size).random(validator)
# define evaluate function here (need of data information)
def evaluate(solution):
start = datetime.datetime.now()
# get indices of filters data to use (filters selection from solution)
indices = []
for index, value in enumerate(solution._data):
if value == 1:
indices.append(index)
print(f'Training SVM with {len(indices)} from {len(solution._data)} available features')
# keep only selected filters from solution
x_train_filters = X_train[:, indices]
x_test_filters = X_test[ :, indices]
# model = mdl.get_trained_model(p_choice, x_train_filters, y_train_filters)
model = train_model(x_train_filters, y_train)
y_test_model = model.predict(x_test_filters)
y_test_predict = [ 1 if x > 0.5 else 0 for x in y_test_model ]
test_roc_auc = roc_auc_score(y_test, y_test_predict)
end = datetime.datetime.now()
diff = end - start
print("Real evaluation took: {}, score found: {}".format(divmod(diff.days * 86400 + diff.seconds, 60), test_roc_auc))
return test_roc_auc
# build all output folder and files based on `output` name
backup_model_folder = os.path.join(cfg.output_backup_folder, p_output)
surrogate_output_model = os.path.join(cfg.output_surrogates_model_folder, p_output)
surrogate_output_data = os.path.join(cfg.output_surrogates_data_folder, p_output)
if not os.path.exists(backup_model_folder):
os.makedirs(backup_model_folder)
if not os.path.exists(cfg.output_surrogates_model_folder):
os.makedirs(cfg.output_surrogates_model_folder)
if not os.path.exists(cfg.output_surrogates_data_folder):
os.makedirs(cfg.output_surrogates_data_folder)
backup_file_path = os.path.join(backup_model_folder, p_output + '.csv')
ucb_backup_file_path = os.path.join(backup_model_folder, p_output + '_ucbPolicy.csv')
surrogate_backup_file_path = os.path.join(cfg.output_surrogates_data_folder, p_output + '_train.csv')
surrogate_k_indices_backup_file_path = os.path.join(cfg.output_surrogates_data_folder, p_output + '_k_indices.csv')
# prepare optimization algorithm (only use of mutation as only ILS are used here, and local search need only local permutation)
operators = [SimpleBinaryMutation(), SimpleMutation()]
policy = UCBPolicy(operators)
# define first line if necessary
if not os.path.exists(surrogate_output_data):
folder, _ = os.path.split(surrogate_output_data)
if not os.path.exists(folder):
os.makedirs(folder)
with open(surrogate_output_data, 'w') as f:
f.write('x;y\n')
# custom start surrogate variable based on problem size
p_start = int(0.5 * problem_size)
# fixed minimal number of real evaluations
if p_start < 50:
p_start = 50
print(f'Starting using surrogate after {p_start} reals training')
# custom ILS for surrogate use
algo = ILSMultiSurrogate(initalizer=init,
evaluator=evaluate, # same evaluator by defadefaultult, as we will use the surrogate function
operators=operators,
policy=policy,
validator=validator,
output_log_surrogates=os.path.join(cfg.output_surrogates_data_folder, 'logs', p_output),
surrogates_file_path=surrogate_output_model,
start_train_surrogates=p_start, # start learning and using surrogate after 1000 real evaluation
solutions_file=surrogate_output_data,
ls_train_surrogates=p_every_ls, # retrain surrogate every `x` iteration
k_division=p_k_division,
k_dynamic=p_k_dynamic,
k_random=p_k_random,
generate_only=p_generate_only,
maximise=True)
algo.addCallback(BasicCheckpoint(every=1, filepath=backup_file_path))
algo.addCallback(UCBCheckpoint(every=1, filepath=ucb_backup_file_path))
algo.addCallback(SurrogateCheckpoint(every=p_ls_iteration, filepath=surrogate_backup_file_path)) # try every LS like this
algo.addCallback(MultiSurrogateCheckpoint(every=p_ls_iteration, filepath=surrogate_k_indices_backup_file_path)) # try every LS like this
bestSol = algo.run(p_ils_iteration, p_ls_iteration)
# print best solution found
print("Found ", bestSol)
# save model information into .csv file
if not os.path.exists(cfg.results_information_folder):
os.makedirs(cfg.results_information_folder)
filename_path = os.path.join(cfg.results_information_folder, cfg.optimization_attributes_result_filename)
line_info = p_data_file + ';' + str(p_ils_iteration) + ';' + str(p_ls_iteration) + ';' + str(bestSol._data) + ';' + str(list(bestSol._data).count(1)) + ';' + str(bestSol.fitness)
with open(filename_path, 'a') as f:
f.write(line_info + '\n')
print('Result saved into %s' % filename_path)
if __name__ == "__main__":
main()