-
Notifications
You must be signed in to change notification settings - Fork 0
/
find_best_attributes.py
201 lines (142 loc) · 6.93 KB
/
find_best_attributes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# main imports
import os
import sys
import argparse
import pandas as pd
import numpy as np
import logging
import datetime
# model imports
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
import joblib
import sklearn.svm as svm
from sklearn.utils import shuffle
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import cross_val_score
# modules and config imports
sys.path.insert(0, '') # trick to enable import of main folder module
import custom_config as cfg
import models as mdl
from macop.algorithms.mono.IteratedLocalSearch import IteratedLocalSearch as ILS
from macop.solutions.BinarySolution import BinarySolution
from macop.operators.mutators.SimpleMutation import SimpleMutation
from macop.operators.mutators.SimpleBinaryMutation import SimpleBinaryMutation
from macop.operators.crossovers.SimpleCrossover import SimpleCrossover
from macop.operators.crossovers.RandomSplitCrossover import RandomSplitCrossover
from macop.operators.policies.UCBPolicy import UCBPolicy
from macop.callbacks.BasicCheckpoint import BasicCheckpoint
from macop.callbacks.UCBCheckpoint import UCBCheckpoint
# variables and parameters
models_list = cfg.models_names_list
# default validator
def validator(solution):
if list(solution.data).count(1) < 5:
return False
return True
def loadDataset(filename):
########################
# 1. Get and prepare data
########################
dataset_train = pd.read_csv(filename + '.train', header=None, sep=";")
dataset_test = pd.read_csv(filename + '.test', header=None, sep=";")
# default first shuffle of data
dataset_train = shuffle(dataset_train)
dataset_test = shuffle(dataset_test)
# get dataset with equal number of classes occurences
noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 1]
not_noisy_df_train = dataset_train[dataset_train.iloc[:, 0] == 0]
#nb_noisy_train = len(noisy_df_train.index)
noisy_df_test = dataset_test[dataset_test.iloc[:, 0] == 1]
not_noisy_df_test = dataset_test[dataset_test.iloc[:, 0] == 0]
#nb_noisy_test = len(noisy_df_test.index)
# use of all data
final_df_train = pd.concat([not_noisy_df_train, noisy_df_train])
final_df_test = pd.concat([not_noisy_df_test, noisy_df_test])
# shuffle data another time
final_df_train = shuffle(final_df_train)
final_df_test = shuffle(final_df_test)
# use of the whole data set for training
x_dataset_train = final_df_train.iloc[:,1:]
x_dataset_test = final_df_test.iloc[:,1:]
y_dataset_train = final_df_train.iloc[:,0]
y_dataset_test = final_df_test.iloc[:,0]
return x_dataset_train, y_dataset_train, x_dataset_test, y_dataset_test
def main():
parser = argparse.ArgumentParser(description="Train and find best filters to use for model")
parser.add_argument('--data', type=str, help='dataset filename prefix (without .train and .test)', required=True)
parser.add_argument('--choice', type=str, help='model choice from list of choices', choices=models_list, required=True)
parser.add_argument('--length', type=int, help='max data length (need to be specify for evaluator)', required=True)
parser.add_argument('--ils', type=int, help='number of total iteration for ils algorithm', required=True)
parser.add_argument('--ls', type=int, help='number of iteration for Local Search algorithm', required=True)
args = parser.parse_args()
p_data_file = args.data
p_choice = args.choice
p_length = args.length
p_ils_iteration = args.ils
p_ls_iteration = args.ls
print(p_data_file)
# load data from file
x_train, y_train, x_test, y_test = loadDataset(p_data_file)
# create `logs` folder if necessary
if not os.path.exists(cfg.output_logs_folder):
os.makedirs(cfg.output_logs_folder)
_, data_file_name = os.path.split(p_data_file)
logging.basicConfig(format='%(asctime)s %(message)s', filename='data/logs/{0}.log'.format(data_file_name), level=logging.DEBUG)
# init solution (`n` attributes)
def init():
return BinarySolution([], p_length
).random(validator)
# define evaluate function here (need of data information)
def evaluate(solution):
start = datetime.datetime.now()
# get indices of filters data to use (filters selection from solution)
indices = []
for index, value in enumerate(solution.data):
if value == 1:
indices.append(index)
# keep only selected filters from solution
x_train_filters = x_train.iloc[:, indices]
y_train_filters = y_train
x_test_filters = x_test.iloc[:, indices]
# TODO : use of GPU implementation of SVM
model = mdl.get_trained_model(p_choice, x_train_filters, y_train_filters)
y_test_model = model.predict(x_test_filters)
test_roc_auc = roc_auc_score(y_test, y_test_model)
end = datetime.datetime.now()
diff = end - start
print("Evaluation took :", divmod(diff.days * 86400 + diff.seconds, 60))
return test_roc_auc
backup_model_folder = os.path.join(cfg.output_backup_folder, data_file_name)
if not os.path.exists(backup_model_folder):
os.makedirs(backup_model_folder)
backup_file_path = os.path.join(backup_model_folder, data_file_name + '.csv')
ucb_backup_file_path = os.path.join(backup_model_folder, data_file_name + '_ucbPolicy.csv')
# prepare optimization algorithm
operators = [SimpleBinaryMutation(), SimpleMutation(), SimpleCrossover(), RandomSplitCrossover()]
policy = UCBPolicy(operators)
algo = ILS(init, evaluate, operators, policy, validator, True)
algo.addCallback(BasicCheckpoint(_every=1, _filepath=backup_file_path))
algo.addCallback(UCBCheckpoint(_every=1, _filepath=ucb_backup_file_path))
bestSol = algo.run(p_ils_iteration, p_ls_iteration)
# print best solution found
print("Found ", bestSol)
# save model information into .csv file
if not os.path.exists(cfg.results_information_folder):
os.makedirs(cfg.results_information_folder)
filename_path = os.path.join(cfg.results_information_folder, cfg.optimization_attributes_result_filename)
filters_counter = 0
# count number of filters
for index, item in enumerate(bestSol.data):
if index != 0 and index % 2 == 1:
# if two attributes are used
if item == 1 or bestSol.data[index - 1] == 1:
filters_counter += 1
line_info = p_data_file + ';' + str(p_ils_iteration) + ';' + str(p_ls_iteration) + ';' + str(bestSol.data) + ';' + str(list(bestSol.data).count(1)) + ';' + str(filters_counter) + ';' + str(bestSol.fitness)
with open(filename_path, 'a') as f:
f.write(line_info + '\n')
print('Result saved into %s' % filename_path)
if __name__ == "__main__":
main()