-
Notifications
You must be signed in to change notification settings - Fork 0
/
curve_fitting.py
193 lines (159 loc) · 4.61 KB
/
curve_fitting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#!/usr/bin/env python
import numpy as pb
import pandas as pd
import matplotlib.pyplot as plt
from numpy import linalg as LA
data = pd.read_csv(
'../data_files/linear_regression_dataset.csv')
X = data['age'].values
Y = data['charges'].values
x_n = (X - pb.min(X)) / (pb.max(X) - pb.min(X))
y_n = (Y - pb.min(Y)) / (pb.max(Y) - pb.min(Y))
X1 = pb.vstack((x_n, y_n))
def cov(x, y):
xbar, ybar = x.mean(), y.mean()
return pb.sum((x - xbar) * (y - ybar)) / (len(x) - 1)
def cov_mat(X):
return pb.array([[cov(X[0], X[0]), cov(X[0], X[1])],
[cov(X[1], X[0]), cov(X[1], X[1])]])
covm = cov_mat(X1)
# print(covm)
eigenvalue, eigenvector = LA.eig(covm)
eigenvector_min = eigenvector[:, pb.argmin(eigenvalue)]
eigenvector_max = eigenvector[:, pb.argmax(eigenvalue)]
def llsm(X, Y):
x = []
y = []
xy = []
x2 = []
n = len(X)
sum_x = 0.0
sum_x2 = 0.0
sum_xy = 0.0
sum_y = 0.0
for i in range(len(X)):
x.append(float(X[i]))
xy.append(float(X[i] * Y[i]))
x2.append(float(X[i] ** 2))
sum_y = sum_y + Y[i]
sum_x = sum_x + X[i]
sum_x2 = sum_x2 + x2[i]
sum_xy = sum_xy + xy[i]
a = pb.array([
[n, sum_x],
[sum_x, sum_x2]])
b = pb.array([sum_y, sum_xy])
solutions = pb.linalg.solve(a, b)
a1 = solutions[0]
a2 = solutions[1]
# print(solutions)
return a2, a1
def tls(X, Y):
x_mean = pb.mean(X)
y_mean = pb.mean(Y)
U = pb.vstack([X, Y]).T
A = pb.dot(U.T, U)
U, S_inv, V = SVD(A)
a, b = V[:, V.shape[1] - 1]
d = a * x_mean + b * y_mean
a3 = -a / b
a4 = d / b
return a3, a4
def SVD(A):
AT = A.T
AAT = A.dot(AT)
U_eigenvalues, U_eigenvectors = LA.eig(AAT)
decending_sort = U_eigenvalues.argsort()[::-1]
U_eigenvalues[::-1].sort()
U_eigenvectors = U_eigenvectors[:, decending_sort]
ATA = AT.dot(A)
V_eigenvalues, V_eigenvectors = LA.eig(ATA)
decending_sort = V_eigenvalues.argsort()[::-1]
V_eigenvalues[::-1].sort()
# print(V_eigenvalues)
V_eigenvectors = V_eigenvectors[:, decending_sort]
VT_eigenvectors = V_eigenvectors.T
diag_U = pb.diag((pb.sqrt(U_eigenvalues)))
sigma = pb.zeros_like(A)
sigma[:diag_U.shape[0], :diag_U.shape[1]] = diag_U
return U_eigenvectors, sigma, V_eigenvectors
def ransac(X, Y):
req_error = 0
prob_out = 200 / len(X)
accuracy = 0.95
iterations = pb.log(1 - accuracy) / pb.log(1 - pb.power((1 - prob_out), 2))
iterations = pb.int(iterations)
iterations = pb.maximum(iterations, 50)
for i in range(iterations):
random_data = pb.random.choice(len(X), size=2)
x_rand = X[random_data]
y_rand = Y[random_data]
m, c = tls(x_rand, y_rand)
error = Y - m * X - c
error = error**2
for i in range(len(error)):
if float(error[i]) > 100:
error[i] = 0
else:
error[i] = 1
cal_error = pb.sum(error)
if cal_error > req_error:
req_error = cal_error
coef = pb.array([m, c])
if req_error / len(X) >= accuracy:
break
return coef
# Linear least square method
a2, a1 = llsm(X, Y)
y_llsm = []
for i in range(0, len(X)):
y = a1 + (a2 * (X[i]))
y_llsm.append(y)
# Total least square
a3, a4 = tls(X, Y)
y_tlsm = []
for i in range(0, len(X)):
y = a4 + (a3 * (X[i]))
y_tlsm.append(y)
# RANSAC
coef = ransac(X, Y)
y_ransac = []
for i in range(0, len(X)):
y = coef[1] + (coef[0] * (X[i]))
y_ransac.append(y)
plt.figure(1, figsize=(8, 4))
plt.scatter(X, Y, c='red')
plt.title("Eigen_values Representation")
plt.xlabel('Age')
plt.ylabel('Charges')
plt.quiver(
pb.mean(X),
pb.mean(Y),
eigenvector_max[0] * (pb.max(X) - pb.min(X)) * pb.max(eigenvalue),
eigenvector_max[1] * (pb.max(Y) - pb.min(Y)) * pb.max(eigenvalue),
units='xy', angles='xy', scale_units='xy', scale=0.2)
plt.quiver(
pb.mean(X),
pb.mean(Y),
eigenvector_min[0] * (pb.max(X) - pb.min(X)) * pb.min(eigenvalue),
eigenvector_min[1] * (pb.max(Y) - pb.min(Y)) * pb.min(eigenvalue),
units='xy', angles='xy', scale_units='xy', scale=0.2)
plt.figure(2, figsize=(8, 4))
plt.xlabel('Age')
plt.ylabel('Charges')
plt.title('Linear least square')
plt.scatter(X, Y, c='red')
plt.plot(X, y_llsm, 'black')
plt.figure(3, figsize=(8, 4))
plt.xlabel('Age')
plt.ylabel('Charges')
plt.title('Total least square')
plt.scatter(X, Y, c='red')
plt.plot(X, y_tlsm, 'black')
plt.figure(4, figsize=(8, 4))
plt.xlabel('Age')
plt.ylabel('Charges')
plt.title('RANSAC')
plt.scatter(X, Y, c='red')
plt.plot(X, y_ransac, 'black')
plt.show()