-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval_vracklay.py
365 lines (302 loc) · 14 KB
/
eval_vracklay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import argparse
import os
import racklay
import numpy as np
import torch
from torch.utils.data import DataLoader
from racklay import videolayout
from racklay.dataloader import Loader
import PIL.Image as pil
import cv2
import matplotlib.pyplot as plt
from torchvision import transforms
import tqdm
from utils import mean_IU, mean_precision
def get_args():
parser = argparse.ArgumentParser(description="Evaluation options")
parser.add_argument("--data_path", type=str, default="./data",
help="Path to the root data directory")
parser.add_argument("--pretrained_path", type=str, default="./models/",
help="Path to the pretrained model")
parser.add_argument("--model_name", type=str, default="videolayout",
help="Name of model")
parser.add_argument("--osm_path", type=str, default="./data/osm",
help="OSM path")
parser.add_argument(
"--split",
type=str,
choices=[
"warehouse",
"argo",
"3Dobject",
"odometry",
"raw"],
help="Data split for training/validation")
parser.add_argument("--seq_len", type=int, default=8,
help="number of frames in an input")
parser.add_argument("--ext", type=str, default="png",
help="File extension of the images")
parser.add_argument("--height", type=int, default=512,
help="Image height")
parser.add_argument("--width", type=int, default=512,
help="Image width")
parser.add_argument(
"--type",
type=str,
choices=[
"both",
"topview",
"frontview"],
help="Type of model being trained")
parser.add_argument("--occ_map_size", type=int, default=512,
help="size of topview occupancy map")
parser.add_argument("--num_workers", type=int, default=12,
help="Number of cpu workers for dataloaders")
parser.add_argument("--num_racks", type=int, default=4,
help="Max number of racks")
return parser.parse_args()
def readlines(filename):
"""Read all the lines in a text file and return as a list
"""
with open(filename, 'r') as f:
lines = f.read().splitlines()
return lines
def sequence_readlines(filename , seq_len):
f = open(filename, "r")
files = [k.split("\n")[:-1] for k in f.read().split(",")[:-1]]
sequence_files = []
temporal_files = []
for seq_files in files:
temporal_files[:] = []
seq_files = [seq_files[0]]*seq_len + seq_files
for i in range(seq_len, len(seq_files)):
temporal_files.append(seq_files[i-seq_len:i])
sequence_files.append(temporal_files)
# print(sequence_files)
return sequence_files
def temporal_readlines(filename , seq_len):
f = open(filename, "r")
files = [k.split("\n")[:-1] for k in f.read().split(",")[:-1]]
print("NUM SEQUENCES - " , len(files))
temporal_files = []
for seq_files in files:
seq_files = [seq_files[0]]*seq_len + seq_files
for i in range(seq_len, len(seq_files)):
temporal_files.append(seq_files[i-seq_len:i])
# print(temporal_files)
# for tf in temporal_files:
# print(tf)
return temporal_files
def load_model(models, model_path):
"""Load model(s) from disk
"""
model_path = os.path.expanduser(model_path)
assert os.path.isdir(model_path), \
"Cannot find folder {}".format(model_path)
print("loading model from folder {}".format(model_path))
for key in models.keys():
print("Loading {} weights...".format(key))
path = os.path.join(model_path, "{}.pth".format(key))
model_dict = models[key].state_dict()
pretrained_dict = torch.load(path)
pretrained_dict = {
k: v for k,
v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
models[key].load_state_dict(model_dict)
return models
def evaluate():
args = get_args()
# Loading Pretarined Model
# models = {}
# models["encoder"] = videolayout.Encoder(18, opt.height, opt.width, False)
# models["convlstm"] = videolayout.ConvLSTM((16, 16), 512, 512, (3, 3), 1)
# if opt.type == "both":
# models["top_decoder"] = racklay.Decoder(
# models["encoder"].resnet_encoder.num_ch_enc, 3*opt.num_racks,opt.occ_map_size)
# models["front_decoder"] = racklay.Decoder(
# models["encoder"].resnet_encoder.num_ch_enc, 3*opt.num_racks,opt.occ_map_size)
# elif opt.type == "topview":
# models["top_decoder"] = racklay.Decoder(
# models["encoder"].resnet_encoder.num_ch_enc)
# elif opt.type == "frontview":
# models["front_decoder"] = racklay.Decoder(
# models["encoder"].resnet_encoder.num_ch_enc)
# for key in models.keys():
# models[key].to("cuda")
# models = load_model(models, opt.pretrained_path)
models = {}
device = torch.device("cuda")
encoder_path = os.path.join(args.pretrained_path, "encoder.pth")
encoder_dict = torch.load(encoder_path, map_location=device)
feed_height = encoder_dict["height"]
feed_width = encoder_dict["width"]
seq_len = args.seq_len
to_tensor = transforms.ToTensor()
models["encoder"] = videolayout.Encoder(18, feed_height, feed_width, False)
filtered_dict_enc = {
k: v for k,
v in encoder_dict.items() if k in models["encoder"].state_dict()}
models["encoder"].load_state_dict(filtered_dict_enc)
models["convlstm"] = videolayout.ConvLSTM((16, 16), 512, 512, (3, 3), 1)
convlstm_path = os.path.join(args.pretrained_path, "convlstm.pth")
models["convlstm"].load_state_dict(torch.load(convlstm_path, map_location=device))
if args.type == "both":
top_decoder_path = os.path.join(
args.pretrained_path, "top_decoder.pth")
front_decoder_path = os.path.join(
args.pretrained_path, "front_decoder.pth")
models["top_decoder"] = videolayout.Decoder(
models["encoder"].resnet_encoder.num_ch_enc, 3*args.num_racks,args.occ_map_size)
models["top_decoder"].load_state_dict(
torch.load(top_decoder_path, map_location=device))
models["front_decoder"] = videolayout.Decoder(
models["encoder"].resnet_encoder.num_ch_enc, 3*args.num_racks,args.occ_map_size)
models["front_decoder"].load_state_dict(
torch.load(front_decoder_path, map_location=device))
elif args.type == "topview":
decoder_path = os.path.join(args.pretrained_path, "top_decoder.pth")
models["top_decoder"] = videolayout.Decoder(
models["encoder"].resnet_encoder.num_ch_enc, 3*args.num_racks,args.occ_map_size)
models["top_decoder"].load_state_dict(
torch.load(decoder_path, map_location=device))
elif args.type == "frontview":
decoder_path = os.path.join(args.pretrained_path, "front_decoder.pth")
models["front_decoder"] = videolayout.Decoder(
models["encoder"].resnet_encoder.num_ch_enc, 3*args.num_racks,args.occ_map_size)
models["front_decoder"].load_state_dict(
torch.load(decoder_path, map_location=device))
for key in models.keys():
models[key].to(device)
models[key].eval()
print("ALL MODEL WEIGHTS LOADED")
# Loading Validation/Testing Dataset
# Data Loaders
dataset_dict = {"warehouse": Loader,
"3Dobject": racklay.KITTIObject,
"odometry": racklay.KITTIOdometry,
"argo": racklay.Argoverse,
"raw": racklay.KITTIRAW}
dataset = dataset_dict[args.split]
fpath = os.path.join(
os.path.dirname(__file__),
"splits",
args.split,
"{}_files.txt")
print(fpath)
test_filenames = temporal_readlines(fpath.format("val_temporal") , args.seq_len)
test_dataset = dataset(args, test_filenames, is_train=False)
test_loader = DataLoader(
test_dataset,
1,
True,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True)
print("LOADERS READY")
print(
"There are {:d} testing items\n".format(
len(test_dataset)))
iou_box_top, mAP_box_top = np.array([0., 0.]), np.array([0., 0.])
iou_rack_top, mAP_rack_top = np.array([0., 0.]), np.array([0., 0.])
iou_box_front, mAP_box_front = np.array([0., 0.]), np.array([0., 0.])
iou_rack_front, mAP_rack_front = np.array([0., 0.]), np.array([0., 0.])
for batch_idx, inputs in tqdm.tqdm(enumerate(test_loader)):
with torch.no_grad():
outputs = process_batch(args, models, inputs)
# print(outputs.keys())
# #top view
if(args.type == "both" or args.type == "topview"):
for i in range(args.num_racks): # For the Rack Case
input_temp = inputs["topview"][:,i,:,:].detach().cpu().numpy()
input_onlyrack = np.zeros_like(input_temp)
input_onlyrack[input_temp==1] = 1
input_temp = np.squeeze(input_onlyrack)
input_temp = cv2.resize(input_temp, dsize=(args.occ_map_size, args.occ_map_size), interpolation=cv2.INTER_NEAREST)
pred = np.squeeze(
torch.argmax(
outputs["top"][:,3*i:3*i+3,:,:].detach(),
1).cpu().numpy())
pred_temp = np.zeros_like(pred)
pred_temp[pred==1] = 1
true = np.squeeze(input_temp)
iou_rack_top += mean_IU(pred_temp, true)
mAP_rack_top += mean_precision(pred_temp, true)
for i in range(args.num_racks):
input_temp = inputs["topview"][:,i,:,:].detach().cpu().numpy()
input_onlybox = np.zeros_like(input_temp)
input_onlybox[input_temp==2] = 1
input_temp = np.squeeze(input_onlybox)
input_temp = cv2.resize(input_temp, dsize=(args.occ_map_size, args.occ_map_size), interpolation=cv2.INTER_NEAREST)
pred = np.squeeze(
torch.argmax(
outputs["top"][:,3*i:3*i+3,:,:].detach(),
1).cpu().numpy())
pred_temp = np.zeros_like(pred)
pred_temp[pred==2] = 1
true = np.squeeze(input_temp)
iou_box_top += mean_IU(pred_temp, true)
mAP_box_top += mean_precision(pred_temp, true)
# #front view
if(args.type == "both" or args.type == "frontview"):
for i in range(args.num_racks): # For the Rack Case
input_temp = inputs["frontview"][:,i,:,:].detach().cpu().numpy()
input_onlyrack = np.zeros_like(input_temp)
input_onlyrack[input_temp==1] = 1
input_temp = np.squeeze(input_onlyrack)
input_temp = cv2.resize(input_temp, dsize=(args.occ_map_size, args.occ_map_size), interpolation=cv2.INTER_NEAREST)
pred = np.squeeze(
torch.argmax(
outputs["front"][:,3*i:3*i+3,:,:].detach(),
1).cpu().numpy())
pred_temp = np.zeros_like(pred)
pred_temp[pred==1] = 1
true = np.squeeze(input_temp)
iou_rack_front += mean_IU(pred_temp, true)
mAP_rack_front += mean_precision(pred_temp, true)
for i in range(args.num_racks):
input_temp = inputs["frontview"][:,i,:,:].detach().cpu().numpy()
input_onlybox = np.zeros_like(input_temp)
input_onlybox[input_temp==2] = 1
input_temp = np.squeeze(input_onlybox)
input_temp = cv2.resize(input_temp, dsize=(args.occ_map_size, args.occ_map_size), interpolation=cv2.INTER_NEAREST)
pred = np.squeeze(
torch.argmax(
outputs["front"][:,3*i:3*i+3,:,:].detach(),
1).cpu().numpy())
pred_temp = np.zeros_like(pred)
pred_temp[pred==2] = 1
true = np.squeeze(input_temp)
iou_box_front += mean_IU(pred_temp, true)
mAP_box_front += mean_precision(pred_temp, true)
if(args.type == "both" or args.type == "topview"):
iou_rack_top /= (len(test_loader)*args.num_racks)
mAP_rack_top /= (len(test_loader)*args.num_racks)
iou_box_top /= (len(test_loader)*args.num_racks)
mAP_box_top /= (len(test_loader)*args.num_racks)
print("Evaluation Results for Rack Top: mIOU: %.4f mAP: %.4f" % (iou_rack_top[1], mAP_rack_top[1]))
print("Evaluation Results for Box Top: mIOU: %.4f mAP: %.4f" % (iou_box_top[1], mAP_box_top[1]))
if(args.type == "both" or args.type == "frontview"):
iou_rack_front /= (len(test_loader)*args.num_racks)
mAP_rack_front /= (len(test_loader)*args.num_racks)
iou_box_front /= (len(test_loader)*args.num_racks)
mAP_box_front /= (len(test_loader)*args.num_racks)
print("Evaluation Results for Rack Front: mIOU: %.4f mAP: %.4f" % (iou_rack_front[1], mAP_rack_front[1]))
print("Evaluation Results for Box Front: mIOU: %.4f mAP: %.4f" % (iou_box_front[1], mAP_box_front[1]))
def process_batch(opt, models, inputs):
outputs = {}
for key, input_ in inputs.items():
inputs[key] = input_.to("cuda")
mu = models["encoder"](inputs['color'])
z = mu
z = models["convlstm"](z)[0][0][:,-1]
if opt.type == "both":
outputs["front"] = models["front_decoder"](z, is_training=False)
outputs["top"] = models["top_decoder"](z, is_training=False)
elif opt.type == "topview":
outputs["top"] = models["top_decoder"](z , is_training=False)
elif opt.type == "frontview":
outputs["front"] = models["front_decoder"](z , is_training=False)
return outputs
if __name__ == "__main__":
evaluate()