forked from sdrangan/digitalcomm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prob_it.tex
333 lines (273 loc) · 9.69 KB
/
prob_it.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
\documentclass[11pt]{article}
\usepackage{fullpage}
\usepackage{amsmath, amssymb, bm, cite, epsfig, psfrag}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{listings}
\usepackage{cite}
\usepackage{hyperref}
\usepackage{tikz}
\usepackage{enumerate}
\usepackage{xcolor}
\usepackage[outercaption]{sidecap}
\usetikzlibrary{shapes,arrows}
\usepackage{mdframed}
\usepackage{mathtools}
\usepackage{siunitx}
\usepackage{mcode}
\usetikzlibrary{automata, positioning, arrows}
%\usetikzlibrary{dsp,chains}
%\restylefloat{figure}
%\theoremstyle{plain} \newtheorem{theorem}{Theorem}
%\theoremstyle{definition} \newtheorem{definition}{Definition}
\def\del{\partial}
\def\ds{\displaystyle}
\def\ts{\textstyle}
\def\beq{\begin{equation}}
\def\eeq{\end{equation}}
\def\beqa{\begin{eqnarray}}
\def\eeqa{\end{eqnarray}}
\def\beqan{\begin{eqnarray*}}
\def\eeqan{\end{eqnarray*}}
\def\nn{\nonumber}
\def\binomial{\mathop{\mathrm{binomial}}}
\def\half{{\ts\frac{1}{2}}}
\def\Half{{\frac{1}{2}}}
\def\N{{\mathbb{N}}}
\def\Z{{\mathbb{Z}}}
\def\Q{{\mathbb{Q}}}
\def\F{{\mathbb{F}}}
\def\R{{\mathbb{R}}}
\def\C{{\mathbb{C}}}
\def\argmin{\mathop{\mathrm{arg\,min}}}
\def\argmax{\mathop{\mathrm{arg\,max}}}
%\def\span{\mathop{\mathrm{span}}}
\def\diag{\mathop{\mathrm{diag}}}
\def\x{\times}
\def\limn{\lim_{n \rightarrow \infty}}
\def\liminfn{\liminf_{n \rightarrow \infty}}
\def\limsupn{\limsup_{n \rightarrow \infty}}
\def\MID{\,|\,}
\def\MIDD{\,;\,}
\newtheorem{proposition}{Proposition}
\newtheorem{definition}{Definition}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{corollary}{Corollary}
\newtheorem{assumption}{Assumption}
\newtheorem{claim}{Claim}
\def\qed{\mbox{} \hfill $\Box$}
\setlength{\unitlength}{1mm}
\def\bhat{\widehat{b}}
\def\ehat{\widehat{e}}
\def\phat{\widehat{p}}
\def\qhat{\widehat{q}}
\def\rhat{\widehat{r}}
\def\shat{\widehat{s}}
\def\uhat{\widehat{u}}
\def\ubar{\overline{u}}
\def\vhat{\widehat{v}}
\def\xhat{\widehat{x}}
\def\xbar{\overline{x}}
\def\zhat{\widehat{z}}
\def\zbar{\overline{z}}
\def\la{\leftarrow}
\def\ra{\rightarrow}
\def\MSE{\mbox{\small \sffamily MSE}}
\def\SNR{\mbox{\small \sffamily SNR}}
\def\SINR{\mbox{\small \sffamily SINR}}
\def\arr{\rightarrow}
\def\Exp{\mathbb{E}}
\def\var{\mbox{var}}
\def\Tr{\mbox{Tr}}
\def\tm1{t\! - \! 1}
\def\tp1{t\! + \! 1}
\def\Xset{{\cal X}}
\newcommand{\bs}[1]{{\boldsymbol{{#1}}}}
\newcommand{\one}{\boldsymbol{1}}
\newcommand{\abf}{\boldsymbol{a}}
\newcommand{\bbf}{{\boldsymbol{b}}}
\newcommand{\dbf}{\boldsymbol{d}}
\newcommand{\ebf}{\boldsymbol{e}}
\newcommand{\gbf}{\boldsymbol{g}}
\newcommand{\hbf}{\boldsymbol{h}}
\newcommand{\pbf}{\boldsymbol{p}}
\newcommand{\pbfhat}{\widehat{\boldsymbol{p}}}
\newcommand{\qbf}{\boldsymbol{q}}
\newcommand{\qbfhat}{\widehat{\boldsymbol{q}}}
\newcommand{\rbf}{\boldsymbol{r}}
\newcommand{\rbfhat}{\widehat{\boldsymbol{r}}}
\newcommand{\sbf}{\boldsymbol{s}}
\newcommand{\sbfhat}{\widehat{\boldsymbol{s}}}
\newcommand{\ubf}{\boldsymbol{u}}
\newcommand{\ubfhat}{\widehat{\boldsymbol{u}}}
\newcommand{\utildebf}{\tilde{\boldsymbol{u}}}
\newcommand{\vbf}{\boldsymbol{v}}
\newcommand{\vbfhat}{\widehat{\boldsymbol{v}}}
\newcommand{\wbf}{\boldsymbol{w}}
\newcommand{\wbfhat}{\widehat{\boldsymbol{w}}}
\newcommand{\xbf}{\boldsymbol{x}}
\newcommand{\xbfhat}{\widehat{\boldsymbol{x}}}
\newcommand{\xbfbar}{\overline{\boldsymbol{x}}}
\newcommand{\ybf}{\boldsymbol{y}}
\newcommand{\zbf}{\boldsymbol{z}}
\newcommand{\zbfbar}{\overline{\boldsymbol{z}}}
\newcommand{\zbfhat}{\widehat{\boldsymbol{z}}}
\newcommand{\Ahat}{\widehat{A}}
\newcommand{\Abf}{\boldsymbol{A}}
\newcommand{\Bbf}{\boldsymbol{B}}
\newcommand{\Cbf}{\boldsymbol{C}}
\newcommand{\Bbfhat}{\widehat{\boldsymbol{B}}}
\newcommand{\Dbf}{\boldsymbol{D}}
\newcommand{\Gbf}{\boldsymbol{G}}
\newcommand{\Hbf}{\boldsymbol{H}}
\newcommand{\Kbf}{\boldsymbol{K}}
\newcommand{\Pbf}{\boldsymbol{P}}
\newcommand{\Phat}{\widehat{P}}
\newcommand{\Qbf}{\boldsymbol{Q}}
\newcommand{\Rbf}{\boldsymbol{R}}
\newcommand{\Rhat}{\widehat{R}}
\newcommand{\Sbf}{\boldsymbol{S}}
\newcommand{\Ubf}{\boldsymbol{U}}
\newcommand{\Vbf}{\boldsymbol{V}}
\newcommand{\Wbf}{\boldsymbol{W}}
\newcommand{\Xhat}{\widehat{X}}
\newcommand{\Xbf}{\boldsymbol{X}}
\newcommand{\Ybf}{\boldsymbol{Y}}
\newcommand{\Zbf}{\boldsymbol{Z}}
\newcommand{\Zhat}{\widehat{Z}}
\newcommand{\Zbfhat}{\widehat{\boldsymbol{Z}}}
\def\alphabf{{\boldsymbol \alpha}}
\def\betabf{{\boldsymbol \beta}}
\def\mubf{{\boldsymbol \mu}}
\def\lambdabf{{\boldsymbol \lambda}}
\def\etabf{{\boldsymbol \eta}}
\def\xibf{{\boldsymbol \xi}}
\def\taubf{{\boldsymbol \tau}}
\def\sigmahat{{\widehat{\sigma}}}
\def\thetabf{{\bm{\theta}}}
\def\thetabfhat{{\widehat{\bm{\theta}}}}
\def\thetahat{{\widehat{\theta}}}
\def\mubar{\overline{\mu}}
\def\muavg{\mu}
\def\sigbf{\bm{\sigma}}
\def\etal{\emph{et al.}}
\def\Ggothic{\mathfrak{G}}
\def\Pset{{\mathcal P}}
\newcommand{\bigCond}[2]{\bigl({#1} \!\bigm\vert\! {#2} \bigr)}
\newcommand{\BigCond}[2]{\Bigl({#1} \!\Bigm\vert\! {#2} \Bigr)}
\def\Rect{\mathop{Rect}}
\def\sinc{\mathop{sinc}}
\def\Real{\mathrm{Re}}
\def\Imag{\mathrm{Im}}
\newcommand{\bkt}[1]{{\langle #1 \rangle}}
% Solution environment
\definecolor{lightgray}{gray}{0.95}
\newmdenv[linecolor=white,backgroundcolor=lightgray,frametitle=Solution:]{solution}
\begin{document}
\title{Problem: Information Theory and Capacity}
\author{Prof.\ Sundeep Rangan}
\date{}
\maketitle
\begin{enumerate}
\item \label{prob:exp} \emph{Entropy of an exponential}. Find the relative entropy of an exponential distributed $X$
with $\Exp(X)=1/\lambda$.
\item \emph{Mutual information on a discrete set.} Suppose that $X$ is discrete uniform on $\{0,1,\ldots,N-1\}$
for some $N > 0$. Let $Y = X + W$ where
\[
P(W=1)=1-P(W=0) = p
\]
for some $p > 0$.
\begin{enumerate}[(a)]
\item Given $Y = y$ for $y>0$, we know $X=y$ or $y-1$. Find $P(X=y|Y=y)$ and $P(X=y-1|Y=y)$.
\item Find the conditional entropy $H(X|Y=y)$ for $y > 0$.
\item Find the conditional entropy $H(X|Y=y)$ for $y = 0$.
\item Find the conditional entropy $H(X)$.
\item Find the mutual information $I(X;Y)$.
\end{enumerate}
\item \label{prob:capacity} \emph{AWGN Capacity}.
Suppose that a signal is transmitted on a bandwidth $B=$\, \SI{100}{MHz},
transmit power $P_t=$\,\SI{30}{dBm}, path loss $L=$\,\SI{103}{dB},
and noise PSD (including noise figure) of $N_0=$\,\SI{-170}{dBm/Hz}.
\begin{enumerate}[(a)]
\item What is the SNR per Hz, $\gamma_s$?
\item What is the Shannon capacity $C$?
\item Suppose that the system achieves a rate $R = 0.5C$. What is the $E_b/N_0$ in dB.
\end{enumerate}
\item \label{prob:expmi} \emph{Mutual information with a binary modulated exponential}.
Suppose that $X \in \{0,1\}$
is an equiprobable bit and we observe $Y$ that has a conditional exponential distribution
\[
p(y|X=i) = \lambda_i \exp(-\lambda_i y), \quad y \geq 0,
\]
for values $\lambda_0$ and $\lambda_1$ with $\lambda_0 > \lambda_1$. We wish to compute the mutual information $I(X;Y)$.
\begin{enumerate}[(a)]
\item Find the conditional entropy $h(Y|X)$. You can the results from Problem~\ref{prob:exp}.
\item Find the PDF of $Y$, $p(y)$.
\item Find an expression for the relative entropy $h(Y)$ and the mutual information $I(Y;X)$.
This expression will have an integral. You do not need to evaluate it.
\item Use MATLAB to compute and plot $I(X;Y)$ for $\lambda_0=1$ and $\lambda_1 = \lambda_0/\gamma$
where $\gamma$ is in the range $\gamma \in [1,50]$. You can interpret $\gamma$ as a SNR since it is
the ratio of the two exponential levels. To perform the numerical integration, you can use the
MATLAB function \mcode{integral}. Although the integral is over $y \in [0,\infty)$, you may
need to run it over a finite range to obtain good results.
\end{enumerate}
\item \label{prob:dismi} \emph{Numerically computing mutual information for a discrete channel.}
In this problem, we show how to compute the mutual information numerically.
As a completely toy example, suppose that $X \in \{0,1,\ldots,N_x-1\}$ is uniform
and $Y \in \{0,1,\ldots,N_y-1\}$ with conditional PMF
\[
P(y|x) = \frac{1}{Z(x)} exp(-\lambda |y-x|)
\]
for some $\lambda$. The constant $Z(x)$ is for normalization.
Complete the following MATLAB code to numerically compute and plot $H(Y)$, $H(Y|X)$ and $I(X;Y)$
for $N_x = 32$, $N_y = 128$, and $\lambda \in [0.5,4]$.
\begin{lstlisting}
% Parameters
nx = 32;
ny = 128;
lamTest = linspace(0.5,4,10);
nlam = length(lamTest);
for i = 1:nlam
lam = lamTest(i);
% TODO:
% Hyx = ...
% Hy = ...
% mi(i) = ...
end
\end{lstlisting}
\item \label{prob:bitwisellr}
\emph{Bitwise LLR.} Suppose two bits $(c_1,c_2)$ are mapped
to one of four real symbol $s \in \{s_1,\ldots,s_4\}$ as shown in Table~\ref{tbl:bitwisellr} for some $B > A > 0$.
Assume the bits are equiprobable.
The symbol $s$ is transmitted through a real AWGN channel $r = s+ w$
where $w \sim {\mathcal N}(0,\sigma^2)$.
\begin{table}
\centering
\begin{tabular}{|c|l|}
\hline
% after \\: \hline or \cline{col1-col2} \cline{col3-col4} ...
Bits $(c_1,c_2)$ & TX symbol $s$ \\ \hline
00 & $s_1=-B$ \\ \hline
01 & $s_2=-A$ \\ \hline
11 & $s_3=A$ \\\hline
10 & $s_4=B$ \\ \hline
\hline
\end{tabular}
\caption{Problem \label{prob:bitwisellr}: Bit to symbol mapping.}
\label{tbl:bitwisellr}
\end{table}
\begin{enumerate}[(a)]
\item What is the posterior probability of $P(s=s_i|r)$ for any of the symbols $s=s_i$?
Leave your answer as an expression in terms of the $r$, $\sigma^2$ and the values $s_j$.
\item What are the bit-wise LLRs for $c_1$ and $c_2$:
\[
L_1(r) = \log \frac{p(r|c_1=1)}{p(r|c_1=0)}, \quad
L_2(r) = \log \frac{p(r|c_2=1)}{p(r|c_2=0)}.
\]
\item Use MATLAB to plot $L_1(r)$ and $L_2(r)$ vs.\ $r$ for $r \in (-6,6)$ with $A=1$, $B=4$ and $\sigma^2=4$.
\end{enumerate}
\end{enumerate}
\end{document}