This repository has been archived by the owner on Jun 1, 2024. It is now read-only.
forked from n0xa/m5stick-nemo
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathMFRC522_I2C.cpp
1751 lines (1578 loc) · 66.4 KB
/
MFRC522_I2C.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* MFRC522.cpp - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS I2C BY AROZCAN
* MFRC522.cpp - Based on ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS SPI Library BY COOQROBOT.
* NOTE: Please also check the comments in MFRC522.h - they provide useful hints and background information.
* Released into the public domain.
* Author: arozcan @ https://github.com/arozcan/MFRC522-I2C-Library
*/
#include <Arduino.h>
#include "MFRC522_I2C.h"
#include <Wire.h>
/////////////////////////////////////////////////////////////////////////////////////
// Functions for setting up the Arduino
/////////////////////////////////////////////////////////////////////////////////////
/**
* Constructor.
* Prepares the output pins.
*/
MFRC522::MFRC522( byte chipAddress
//byte resetPowerDownPin ///< Arduino pin connected to MFRC522's reset and power down input (Pin 6, NRSTPD, active low)
) {
_chipAddress = chipAddress;
// _resetPowerDownPin = resetPowerDownPin;
} // End constructor
/////////////////////////////////////////////////////////////////////////////////////
// Basic interface functions for communicating with the MFRC522
/////////////////////////////////////////////////////////////////////////////////////
/**
* Writes a byte to the specified register in the MFRC522 chip.
* The interface is described in the datasheet section 8.1.2.
*/
void MFRC522::PCD_WriteRegister( byte reg, ///< The register to write to. One of the PCD_Register enums.
byte value ///< The value to write.
) {
Wire.beginTransmission(_chipAddress);
Wire.write(reg);
Wire.write(value);
Wire.endTransmission();
} // End PCD_WriteRegister()
/**
* Writes a number of bytes to the specified register in the MFRC522 chip.
* The interface is described in the datasheet section 8.1.2.
*/
void MFRC522::PCD_WriteRegister( byte reg, ///< The register to write to. One of the PCD_Register enums.
byte count, ///< The number of bytes to write to the register
byte *values ///< The values to write. Byte array.
) {
Wire.beginTransmission(_chipAddress);
Wire.write(reg);
for (byte index = 0; index < count; index++) {
Wire.write(values[index]);
}
Wire.endTransmission();
} // End PCD_WriteRegister()
/**
* Reads a byte from the specified register in the MFRC522 chip.
* The interface is described in the datasheet section 8.1.2.
*/
byte MFRC522::PCD_ReadRegister( byte reg ///< The register to read from. One of the PCD_Register enums.
) {
byte value;
//digitalWrite(_chipSelectPin, LOW); // Select slave
Wire.beginTransmission(_chipAddress);
Wire.write(reg);
Wire.endTransmission();
Wire.requestFrom(_chipAddress, 1);
value = Wire.read();
return value;
} // End PCD_ReadRegister()
/**
* Reads a number of bytes from the specified register in the MFRC522 chip.
* The interface is described in the datasheet section 8.1.2.
*/
void MFRC522::PCD_ReadRegister( byte reg, ///< The register to read from. One of the PCD_Register enums.
byte count, ///< The number of bytes to read
byte *values, ///< Byte array to store the values in.
byte rxAlign ///< Only bit positions rxAlign..7 in values[0] are updated.
) {
if (count == 0) {
return;
}
byte address = reg;
byte index = 0; // Index in values array.
Wire.beginTransmission(_chipAddress);
Wire.write(address);
Wire.endTransmission();
Wire.requestFrom(_chipAddress, count);
while (Wire.available()) {
if (index == 0 && rxAlign) { // Only update bit positions rxAlign..7 in values[0]
// Create bit mask for bit positions rxAlign..7
byte mask = 0;
for (byte i = rxAlign; i <= 7; i++) {
mask |= (1 << i);
}
// Read value and tell that we want to read the same address again.
byte value = Wire.read();
// Apply mask to both current value of values[0] and the new data in value.
values[0] = (values[index] & ~mask) | (value & mask);
}
else { // Normal case
values[index] = Wire.read();
}
index++;
}
} // End PCD_ReadRegister()
/**
* Sets the bits given in mask in register reg.
*/
void MFRC522::PCD_SetRegisterBitMask( byte reg, ///< The register to update. One of the PCD_Register enums.
byte mask ///< The bits to set.
) {
byte tmp;
tmp = PCD_ReadRegister(reg);
PCD_WriteRegister(reg, tmp | mask); // set bit mask
} // End PCD_SetRegisterBitMask()
/**
* Clears the bits given in mask from register reg.
*/
void MFRC522::PCD_ClearRegisterBitMask( byte reg, ///< The register to update. One of the PCD_Register enums.
byte mask ///< The bits to clear.
) {
byte tmp;
tmp = PCD_ReadRegister(reg);
PCD_WriteRegister(reg, tmp & (~mask)); // clear bit mask
} // End PCD_ClearRegisterBitMask()
/**
* Use the CRC coprocessor in the MFRC522 to calculate a CRC_A.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
byte MFRC522::PCD_CalculateCRC( byte *data, ///< In: Pointer to the data to transfer to the FIFO for CRC calculation.
byte length, ///< In: The number of bytes to transfer.
byte *result ///< Out: Pointer to result buffer. Result is written to result[0..1], low byte first.
) {
PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command.
PCD_WriteRegister(DivIrqReg, 0x04); // Clear the CRCIRq interrupt request bit
PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization
PCD_WriteRegister(FIFODataReg, length, data); // Write data to the FIFO
PCD_WriteRegister(CommandReg, PCD_CalcCRC); // Start the calculation
// Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73�s.
word i = 5000;
byte n;
while (1) {
n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved
if (n & 0x04) { // CRCIRq bit set - calculation done
break;
}
if (--i == 0) { // The emergency break. We will eventually terminate on this one after 89ms. Communication with the MFRC522 might be down.
return STATUS_TIMEOUT;
}
}
PCD_WriteRegister(CommandReg, PCD_Idle); // Stop calculating CRC for new content in the FIFO.
// Transfer the result from the registers to the result buffer
result[0] = PCD_ReadRegister(CRCResultRegL);
result[1] = PCD_ReadRegister(CRCResultRegH);
return STATUS_OK;
} // End PCD_CalculateCRC()
/////////////////////////////////////////////////////////////////////////////////////
// Functions for manipulating the MFRC522
/////////////////////////////////////////////////////////////////////////////////////
/**
* Initializes the MFRC522 chip.
*/
void MFRC522::PCD_Init() {
// Set the chipSelectPin as digital output, do not select the slave yet
// Set the resetPowerDownPin as digital output, do not reset or power down.
// pinMode(_resetPowerDownPin, OUTPUT);
// if (digitalRead(_resetPowerDownPin) == LOW) { //The MFRC522 chip is in power down mode.
// digitalWrite(_resetPowerDownPin, HIGH); // Exit power down mode. This triggers a hard reset.
// // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74�s. Let us be generous: 50ms.
// delay(50);
// }
// else { // Perform a soft reset
PCD_Reset();
// }
// When communicating with a PICC we need a timeout if something goes wrong.
// f_timer = 13.56 MHz / (2*TPreScaler+1) where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo].
// TPrescaler_Hi are the four low bits in TModeReg. TPrescaler_Lo is TPrescalerReg.
PCD_WriteRegister(TModeReg, 0x80); // TAuto=1; timer starts automatically at the end of the transmission in all communication modes at all speeds
PCD_WriteRegister(TPrescalerReg, 0xA9); // TPreScaler = TModeReg[3..0]:TPrescalerReg, ie 0x0A9 = 169 => f_timer=40kHz, ie a timer period of 25�s.
PCD_WriteRegister(TReloadRegH, 0x03); // Reload timer with 0x3E8 = 1000, ie 25ms before timeout.
PCD_WriteRegister(TReloadRegL, 0xE8);
PCD_WriteRegister(TxASKReg, 0x40); // Default 0x00. Force a 100 % ASK modulation independent of the ModGsPReg register setting
PCD_WriteRegister(ModeReg, 0x3D); // Default 0x3F. Set the preset value for the CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4)
PCD_AntennaOn(); // Enable the antenna driver pins TX1 and TX2 (they were disabled by the reset)
} // End PCD_Init()
/**
* Performs a soft reset on the MFRC522 chip and waits for it to be ready again.
*/
void MFRC522::PCD_Reset() {
PCD_WriteRegister(CommandReg, PCD_SoftReset); // Issue the SoftReset command.
// The datasheet does not mention how long the SoftRest command takes to complete.
// But the MFRC522 might have been in soft power-down mode (triggered by bit 4 of CommandReg)
// Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74�s. Let us be generous: 50ms.
delay(50);
// Wait for the PowerDown bit in CommandReg to be cleared
while (PCD_ReadRegister(CommandReg) & (1<<4)) {
// PCD still restarting - unlikely after waiting 50ms, but better safe than sorry.
}
} // End PCD_Reset()
/**
* Turns the antenna on by enabling pins TX1 and TX2.
* After a reset these pins are disabled.
*/
void MFRC522::PCD_AntennaOn() {
byte value = PCD_ReadRegister(TxControlReg);
if ((value & 0x03) != 0x03) {
PCD_WriteRegister(TxControlReg, value | 0x03);
}
} // End PCD_AntennaOn()
/**
* Turns the antenna off by disabling pins TX1 and TX2.
*/
void MFRC522::PCD_AntennaOff() {
PCD_ClearRegisterBitMask(TxControlReg, 0x03);
} // End PCD_AntennaOff()
/**
* Get the current MFRC522 Receiver Gain (RxGain[2:0]) value.
* See 9.3.3.6 / table 98 in http://www.nxp.com/documents/data_sheet/MFRC522.pdf
* NOTE: Return value scrubbed with (0x07<<4)=01110000b as RCFfgReg may use reserved bits.
*
* @return Value of the RxGain, scrubbed to the 3 bits used.
*/
byte MFRC522::PCD_GetAntennaGain() {
return PCD_ReadRegister(RFCfgReg) & (0x07<<4);
} // End PCD_GetAntennaGain()
/**
* Set the MFRC522 Receiver Gain (RxGain) to value specified by given mask.
* See 9.3.3.6 / table 98 in http://www.nxp.com/documents/data_sheet/MFRC522.pdf
* NOTE: Given mask is scrubbed with (0x07<<4)=01110000b as RCFfgReg may use reserved bits.
*/
void MFRC522::PCD_SetAntennaGain(byte mask) {
if (PCD_GetAntennaGain() != mask) { // only bother if there is a change
PCD_ClearRegisterBitMask(RFCfgReg, (0x07<<4)); // clear needed to allow 000 pattern
PCD_SetRegisterBitMask(RFCfgReg, mask & (0x07<<4)); // only set RxGain[2:0] bits
}
} // End PCD_SetAntennaGain()
/**
* Performs a self-test of the MFRC522
* See 16.1.1 in http://www.nxp.com/documents/data_sheet/MFRC522.pdf
*
* @return Whether or not the test passed.
*/
bool MFRC522::PCD_PerformSelfTest() {
// This follows directly the steps outlined in 16.1.1
// 1. Perform a soft reset.
PCD_Reset();
// 2. Clear the internal buffer by writing 25 bytes of 00h
byte ZEROES[25] = {0x00};
PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // flush the FIFO buffer
PCD_WriteRegister(FIFODataReg, 25, ZEROES); // write 25 bytes of 00h to FIFO
PCD_WriteRegister(CommandReg, PCD_Mem); // transfer to internal buffer
// 3. Enable self-test
PCD_WriteRegister(AutoTestReg, 0x09);
// 4. Write 00h to FIFO buffer
PCD_WriteRegister(FIFODataReg, 0x00);
// 5. Start self-test by issuing the CalcCRC command
PCD_WriteRegister(CommandReg, PCD_CalcCRC);
// 6. Wait for self-test to complete
word i;
byte n;
for (i = 0; i < 0xFF; i++) {
n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved
if (n & 0x04) { // CRCIRq bit set - calculation done
break;
}
}
PCD_WriteRegister(CommandReg, PCD_Idle); // Stop calculating CRC for new content in the FIFO.
// 7. Read out resulting 64 bytes from the FIFO buffer.
byte result[64];
PCD_ReadRegister(FIFODataReg, 64, result, 0);
// Auto self-test done
// Reset AutoTestReg register to be 0 again. Required for normal operation.
PCD_WriteRegister(AutoTestReg, 0x00);
// Determine firmware version (see section 9.3.4.8 in spec)
byte version = PCD_ReadRegister(VersionReg);
// Pick the appropriate reference values
const byte *reference;
switch (version) {
case 0x88: // Fudan Semiconductor FM17522 clone
reference = FM17522_firmware_reference;
break;
case 0x90: // Version 0.0
reference = MFRC522_firmware_referenceV0_0;
break;
case 0x91: // Version 1.0
reference = MFRC522_firmware_referenceV1_0;
break;
case 0x92: // Version 2.0
reference = MFRC522_firmware_referenceV2_0;
break;
default: // Unknown version
return false;
}
// Verify that the results match up to our expectations
for (i = 0; i < 64; i++) {
if (result[i] != pgm_read_byte(&(reference[i]))) {
return false;
}
}
// Test passed; all is good.
return true;
} // End PCD_PerformSelfTest()
/////////////////////////////////////////////////////////////////////////////////////
// Functions for communicating with PICCs
/////////////////////////////////////////////////////////////////////////////////////
/**
* Executes the Transceive command.
* CRC validation can only be done if backData and backLen are specified.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
byte MFRC522::PCD_TransceiveData( byte *sendData, ///< Pointer to the data to transfer to the FIFO.
byte sendLen, ///< Number of bytes to transfer to the FIFO.
byte *backData, ///< NULL or pointer to buffer if data should be read back after executing the command.
byte *backLen, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned.
byte *validBits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits. Default NULL.
byte rxAlign, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0.
bool checkCRC ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated.
) {
byte waitIRq = 0x30; // RxIRq and IdleIRq
return PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, sendData, sendLen, backData, backLen, validBits, rxAlign, checkCRC);
} // End PCD_TransceiveData()
/**
* Transfers data to the MFRC522 FIFO, executes a command, waits for completion and transfers data back from the FIFO.
* CRC validation can only be done if backData and backLen are specified.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
byte MFRC522::PCD_CommunicateWithPICC( byte command, ///< The command to execute. One of the PCD_Command enums.
byte waitIRq, ///< The bits in the ComIrqReg register that signals successful completion of the command.
byte *sendData, ///< Pointer to the data to transfer to the FIFO.
byte sendLen, ///< Number of bytes to transfer to the FIFO.
byte *backData, ///< NULL or pointer to buffer if data should be read back after executing the command.
byte *backLen, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned.
byte *validBits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits.
byte rxAlign, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0.
bool checkCRC ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated.
) {
byte n, _validBits;
unsigned int i;
// Prepare values for BitFramingReg
byte txLastBits = validBits ? *validBits : 0;
byte bitFraming = (rxAlign << 4) + txLastBits; // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]
PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command.
PCD_WriteRegister(ComIrqReg, 0x7F); // Clear all seven interrupt request bits
PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization
PCD_WriteRegister(FIFODataReg, sendLen, sendData); // Write sendData to the FIFO
PCD_WriteRegister(BitFramingReg, bitFraming); // Bit adjustments
PCD_WriteRegister(CommandReg, command); // Execute the command
if (command == PCD_Transceive) {
PCD_SetRegisterBitMask(BitFramingReg, 0x80); // StartSend=1, transmission of data starts
}
// Wait for the command to complete.
// In PCD_Init() we set the TAuto flag in TModeReg. This means the timer automatically starts when the PCD stops transmitting.
// Each iteration of the do-while-loop takes 17.86�s.
i = 2000;
while (1) {
n = PCD_ReadRegister(ComIrqReg); // ComIrqReg[7..0] bits are: Set1 TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq
if (n & waitIRq) { // One of the interrupts that signal success has been set.
break;
}
if (n & 0x01) { // Timer interrupt - nothing received in 25ms
return STATUS_TIMEOUT;
}
if (--i == 0) { // The emergency break. If all other condions fail we will eventually terminate on this one after 35.7ms. Communication with the MFRC522 might be down.
return STATUS_TIMEOUT;
}
}
// Stop now if any errors except collisions were detected.
byte errorRegValue = PCD_ReadRegister(ErrorReg); // ErrorReg[7..0] bits are: WrErr TempErr reserved BufferOvfl CollErr CRCErr ParityErr ProtocolErr
if (errorRegValue & 0x13) { // BufferOvfl ParityErr ProtocolErr
return STATUS_ERROR;
}
// If the caller wants data back, get it from the MFRC522.
if (backData && backLen) {
n = PCD_ReadRegister(FIFOLevelReg); // Number of bytes in the FIFO
if (n > *backLen) {
return STATUS_NO_ROOM;
}
*backLen = n; // Number of bytes returned
PCD_ReadRegister(FIFODataReg, n, backData, rxAlign); // Get received data from FIFO
_validBits = PCD_ReadRegister(ControlReg) & 0x07; // RxLastBits[2:0] indicates the number of valid bits in the last received byte. If this value is 000b, the whole byte is valid.
if (validBits) {
*validBits = _validBits;
}
}
// Tell about collisions
if (errorRegValue & 0x08) { // CollErr
return STATUS_COLLISION;
}
// Perform CRC_A validation if requested.
if (backData && backLen && checkCRC) {
// In this case a MIFARE Classic NAK is not OK.
if (*backLen == 1 && _validBits == 4) {
return STATUS_MIFARE_NACK;
}
// We need at least the CRC_A value and all 8 bits of the last byte must be received.
if (*backLen < 2 || _validBits != 0) {
return STATUS_CRC_WRONG;
}
// Verify CRC_A - do our own calculation and store the control in controlBuffer.
byte controlBuffer[2];
n = PCD_CalculateCRC(&backData[0], *backLen - 2, &controlBuffer[0]);
if (n != STATUS_OK) {
return n;
}
if ((backData[*backLen - 2] != controlBuffer[0]) || (backData[*backLen - 1] != controlBuffer[1])) {
return STATUS_CRC_WRONG;
}
}
return STATUS_OK;
} // End PCD_CommunicateWithPICC()
/**
* Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame.
* Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
byte MFRC522::PICC_RequestA(byte *bufferATQA, ///< The buffer to store the ATQA (Answer to request) in
byte *bufferSize ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK.
) {
return PICC_REQA_or_WUPA(PICC_CMD_REQA, bufferATQA, bufferSize);
} // End PICC_RequestA()
/**
* Transmits a Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame.
* Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
byte MFRC522::PICC_WakeupA( byte *bufferATQA, ///< The buffer to store the ATQA (Answer to request) in
byte *bufferSize ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK.
) {
return PICC_REQA_or_WUPA(PICC_CMD_WUPA, bufferATQA, bufferSize);
} // End PICC_WakeupA()
/**
* Transmits REQA or WUPA commands.
* Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
byte MFRC522::PICC_REQA_or_WUPA( byte command, ///< The command to send - PICC_CMD_REQA or PICC_CMD_WUPA
byte *bufferATQA, ///< The buffer to store the ATQA (Answer to request) in
byte *bufferSize ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK.
) {
byte validBits;
byte status;
if (bufferATQA == NULL || *bufferSize < 2) { // The ATQA response is 2 bytes long.
return STATUS_NO_ROOM;
}
PCD_ClearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared.
validBits = 7; // For REQA and WUPA we need the short frame format - transmit only 7 bits of the last (and only) byte. TxLastBits = BitFramingReg[2..0]
status = PCD_TransceiveData(&command, 1, bufferATQA, bufferSize, &validBits);
if (status != STATUS_OK) {
return status;
}
if (*bufferSize != 2 || validBits != 0) { // ATQA must be exactly 16 bits.
return STATUS_ERROR;
}
return STATUS_OK;
} // End PICC_REQA_or_WUPA()
/**
* Transmits SELECT/ANTICOLLISION commands to select a single PICC.
* Before calling this function the PICCs must be placed in the READY(*) state by calling PICC_RequestA() or PICC_WakeupA().
* On success:
* - The chosen PICC is in state ACTIVE(*) and all other PICCs have returned to state IDLE/HALT. (Figure 7 of the ISO/IEC 14443-3 draft.)
* - The UID size and value of the chosen PICC is returned in *uid along with the SAK.
*
* A PICC UID consists of 4, 7 or 10 bytes.
* Only 4 bytes can be specified in a SELECT command, so for the longer UIDs two or three iterations are used:
* UID size Number of UID bytes Cascade levels Example of PICC
* ======== =================== ============== ===============
* single 4 1 MIFARE Classic
* double 7 2 MIFARE Ultralight
* triple 10 3 Not currently in use?
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
byte MFRC522::PICC_Select( Uid *uid, ///< Pointer to Uid struct. Normally output, but can also be used to supply a known UID.
byte validBits ///< The number of known UID bits supplied in *uid. Normally 0. If set you must also supply uid->size.
) {
bool uidComplete;
bool selectDone;
bool useCascadeTag;
byte cascadeLevel = 1;
byte result;
byte count;
byte index;
byte uidIndex; // The first index in uid->uidByte[] that is used in the current Cascade Level.
int8_t currentLevelKnownBits; // The number of known UID bits in the current Cascade Level.
byte buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 byte standard frame + 2 bytes CRC_A
byte bufferUsed; // The number of bytes used in the buffer, ie the number of bytes to transfer to the FIFO.
byte rxAlign; // Used in BitFramingReg. Defines the bit position for the first bit received.
byte txLastBits; // Used in BitFramingReg. The number of valid bits in the last transmitted byte.
byte *responseBuffer;
byte responseLength;
// Description of buffer structure:
// Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3
// Byte 1: NVB Number of Valid Bits (in complete command, not just the UID): High nibble: complete bytes, Low nibble: Extra bits.
// Byte 2: UID-data or CT See explanation below. CT means Cascade Tag.
// Byte 3: UID-data
// Byte 4: UID-data
// Byte 5: UID-data
// Byte 6: BCC Block Check Character - XOR of bytes 2-5
// Byte 7: CRC_A
// Byte 8: CRC_A
// The BCC and CRC_A is only transmitted if we know all the UID bits of the current Cascade Level.
//
// Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID contents and cascade levels)
// UID size Cascade level Byte2 Byte3 Byte4 Byte5
// ======== ============= ===== ===== ===== =====
// 4 bytes 1 uid0 uid1 uid2 uid3
// 7 bytes 1 CT uid0 uid1 uid2
// 2 uid3 uid4 uid5 uid6
// 10 bytes 1 CT uid0 uid1 uid2
// 2 CT uid3 uid4 uid5
// 3 uid6 uid7 uid8 uid9
// Sanity checks
if (validBits > 80) {
return STATUS_INVALID;
}
// Prepare MFRC522
PCD_ClearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared.
// Repeat Cascade Level loop until we have a complete UID.
uidComplete = false;
while (!uidComplete) {
// Set the Cascade Level in the SEL byte, find out if we need to use the Cascade Tag in byte 2.
switch (cascadeLevel) {
case 1:
buffer[0] = PICC_CMD_SEL_CL1;
uidIndex = 0;
useCascadeTag = validBits && uid->size > 4; // When we know that the UID has more than 4 bytes
break;
case 2:
buffer[0] = PICC_CMD_SEL_CL2;
uidIndex = 3;
useCascadeTag = validBits && uid->size > 7; // When we know that the UID has more than 7 bytes
break;
case 3:
buffer[0] = PICC_CMD_SEL_CL3;
uidIndex = 6;
useCascadeTag = false; // Never used in CL3.
break;
default:
return STATUS_INTERNAL_ERROR;
break;
}
// How many UID bits are known in this Cascade Level?
currentLevelKnownBits = validBits - (8 * uidIndex);
if (currentLevelKnownBits < 0) {
currentLevelKnownBits = 0;
}
// Copy the known bits from uid->uidByte[] to buffer[]
index = 2; // destination index in buffer[]
if (useCascadeTag) {
buffer[index++] = PICC_CMD_CT;
}
byte bytesToCopy = currentLevelKnownBits / 8 + (currentLevelKnownBits % 8 ? 1 : 0); // The number of bytes needed to represent the known bits for this level.
if (bytesToCopy) {
byte maxBytes = useCascadeTag ? 3 : 4; // Max 4 bytes in each Cascade Level. Only 3 left if we use the Cascade Tag
if (bytesToCopy > maxBytes) {
bytesToCopy = maxBytes;
}
for (count = 0; count < bytesToCopy; count++) {
buffer[index++] = uid->uidByte[uidIndex + count];
}
}
// Now that the data has been copied we need to include the 8 bits in CT in currentLevelKnownBits
if (useCascadeTag) {
currentLevelKnownBits += 8;
}
// Repeat anti collision loop until we can transmit all UID bits + BCC and receive a SAK - max 32 iterations.
selectDone = false;
while (!selectDone) {
// Find out how many bits and bytes to send and receive.
if (currentLevelKnownBits >= 32) { // All UID bits in this Cascade Level are known. This is a SELECT.
//Serial.print(F("SELECT: currentLevelKnownBits=")); Serial.println(currentLevelKnownBits, DEC);
buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes
// Calculate BCC - Block Check Character
buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5];
// Calculate CRC_A
result = PCD_CalculateCRC(buffer, 7, &buffer[7]);
if (result != STATUS_OK) {
return result;
}
txLastBits = 0; // 0 => All 8 bits are valid.
bufferUsed = 9;
// Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx)
responseBuffer = &buffer[6];
responseLength = 3;
}
else { // This is an ANTICOLLISION.
//Serial.print(F("ANTICOLLISION: currentLevelKnownBits=")); Serial.println(currentLevelKnownBits, DEC);
txLastBits = currentLevelKnownBits % 8;
count = currentLevelKnownBits / 8; // Number of whole bytes in the UID part.
index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs
buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits
bufferUsed = index + (txLastBits ? 1 : 0);
// Store response in the unused part of buffer
responseBuffer = &buffer[index];
responseLength = sizeof(buffer) - index;
}
// Set bit adjustments
rxAlign = txLastBits; // Having a seperate variable is overkill. But it makes the next line easier to read.
PCD_WriteRegister(BitFramingReg, (rxAlign << 4) + txLastBits); // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0]
// Transmit the buffer and receive the response.
result = PCD_TransceiveData(buffer, bufferUsed, responseBuffer, &responseLength, &txLastBits, rxAlign);
if (result == STATUS_COLLISION) { // More than one PICC in the field => collision.
result = PCD_ReadRegister(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0]
if (result & 0x20) { // CollPosNotValid
return STATUS_COLLISION; // Without a valid collision position we cannot continue
}
byte collisionPos = result & 0x1F; // Values 0-31, 0 means bit 32.
if (collisionPos == 0) {
collisionPos = 32;
}
if (collisionPos <= currentLevelKnownBits) { // No progress - should not happen
return STATUS_INTERNAL_ERROR;
}
// Choose the PICC with the bit set.
currentLevelKnownBits = collisionPos;
count = (currentLevelKnownBits - 1) % 8; // The bit to modify
index = 1 + (currentLevelKnownBits / 8) + (count ? 1 : 0); // First byte is index 0.
buffer[index] |= (1 << count);
}
else if (result != STATUS_OK) {
return result;
}
else { // STATUS_OK
if (currentLevelKnownBits >= 32) { // This was a SELECT.
selectDone = true; // No more anticollision
// We continue below outside the while.
}
else { // This was an ANTICOLLISION.
// We now have all 32 bits of the UID in this Cascade Level
currentLevelKnownBits = 32;
// Run loop again to do the SELECT.
}
}
} // End of while (!selectDone)
// We do not check the CBB - it was constructed by us above.
// Copy the found UID bytes from buffer[] to uid->uidByte[]
index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[]
bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4;
for (count = 0; count < bytesToCopy; count++) {
uid->uidByte[uidIndex + count] = buffer[index++];
}
// Check response SAK (Select Acknowledge)
if (responseLength != 3 || txLastBits != 0) { // SAK must be exactly 24 bits (1 byte + CRC_A).
return STATUS_ERROR;
}
// Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore.
result = PCD_CalculateCRC(responseBuffer, 1, &buffer[2]);
if (result != STATUS_OK) {
return result;
}
if ((buffer[2] != responseBuffer[1]) || (buffer[3] != responseBuffer[2])) {
return STATUS_CRC_WRONG;
}
if (responseBuffer[0] & 0x04) { // Cascade bit set - UID not complete yes
cascadeLevel++;
}
else {
uidComplete = true;
uid->sak = responseBuffer[0];
}
} // End of while (!uidComplete)
// Set correct uid->size
uid->size = 3 * cascadeLevel + 1;
return STATUS_OK;
} // End PICC_Select()
/**
* Instructs a PICC in state ACTIVE(*) to go to state HALT.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
byte MFRC522::PICC_HaltA() {
byte result;
byte buffer[4];
// Build command buffer
buffer[0] = PICC_CMD_HLTA;
buffer[1] = 0;
// Calculate CRC_A
result = PCD_CalculateCRC(buffer, 2, &buffer[2]);
if (result != STATUS_OK) {
return result;
}
// Send the command.
// The standard says:
// If the PICC responds with any modulation during a period of 1 ms after the end of the frame containing the
// HLTA command, this response shall be interpreted as 'not acknowledge'.
// We interpret that this way: Only STATUS_TIMEOUT is an success.
result = PCD_TransceiveData(buffer, sizeof(buffer), NULL, 0);
if (result == STATUS_TIMEOUT) {
return STATUS_OK;
}
if (result == STATUS_OK) { // That is ironically NOT ok in this case ;-)
return STATUS_ERROR;
}
return result;
} // End PICC_HaltA()
/////////////////////////////////////////////////////////////////////////////////////
// Functions for communicating with MIFARE PICCs
/////////////////////////////////////////////////////////////////////////////////////
/**
* Executes the MFRC522 MFAuthent command.
* This command manages MIFARE authentication to enable a secure communication to any MIFARE Mini, MIFARE 1K and MIFARE 4K card.
* The authentication is described in the MFRC522 datasheet section 10.3.1.9 and http://www.nxp.com/documents/data_sheet/MF1S503x.pdf section 10.1.
* For use with MIFARE Classic PICCs.
* The PICC must be selected - ie in state ACTIVE(*) - before calling this function.
* Remember to call PCD_StopCrypto1() after communicating with the authenticated PICC - otherwise no new communications can start.
*
* All keys are set to FFFFFFFFFFFFh at chip delivery.
*
* @return STATUS_OK on success, STATUS_??? otherwise. Probably STATUS_TIMEOUT if you supply the wrong key.
*/
byte MFRC522::PCD_Authenticate(byte command, ///< PICC_CMD_MF_AUTH_KEY_A or PICC_CMD_MF_AUTH_KEY_B
byte blockAddr, ///< The block number. See numbering in the comments in the .h file.
MIFARE_Key *key, ///< Pointer to the Crypteo1 key to use (6 bytes)
Uid *uid ///< Pointer to Uid struct. The first 4 bytes of the UID is used.
) {
byte waitIRq = 0x10; // IdleIRq
// Build command buffer
byte sendData[12];
sendData[0] = command;
sendData[1] = blockAddr;
for (byte i = 0; i < MF_KEY_SIZE; i++) { // 6 key bytes
sendData[2+i] = key->keyByte[i];
}
for (byte i = 0; i < 4; i++) { // The first 4 bytes of the UID
sendData[8+i] = uid->uidByte[i];
}
// Start the authentication.
return PCD_CommunicateWithPICC(PCD_MFAuthent, waitIRq, &sendData[0], sizeof(sendData));
} // End PCD_Authenticate()
/**
* Used to exit the PCD from its authenticated state.
* Remember to call this function after communicating with an authenticated PICC - otherwise no new communications can start.
*/
void MFRC522::PCD_StopCrypto1() {
// Clear MFCrypto1On bit
PCD_ClearRegisterBitMask(Status2Reg, 0x08); // Status2Reg[7..0] bits are: TempSensClear I2CForceHS reserved reserved MFCrypto1On ModemState[2:0]
} // End PCD_StopCrypto1()
/**
* Reads 16 bytes (+ 2 bytes CRC_A) from the active PICC.
*
* For MIFARE Classic the sector containing the block must be authenticated before calling this function.
*
* For MIFARE Ultralight only addresses 00h to 0Fh are decoded.
* The MF0ICU1 returns a NAK for higher addresses.
* The MF0ICU1 responds to the READ command by sending 16 bytes starting from the page address defined by the command argument.
* For example; if blockAddr is 03h then pages 03h, 04h, 05h, 06h are returned.
* A roll-back is implemented: If blockAddr is 0Eh, then the contents of pages 0Eh, 0Fh, 00h and 01h are returned.
*
* The buffer must be at least 18 bytes because a CRC_A is also returned.
* Checks the CRC_A before returning STATUS_OK.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
byte MFRC522::MIFARE_Read( byte blockAddr, ///< MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The first page to return data from.
byte *buffer, ///< The buffer to store the data in
byte *bufferSize ///< Buffer size, at least 18 bytes. Also number of bytes returned if STATUS_OK.
) {
byte result;
// Sanity check
if (buffer == NULL || *bufferSize < 18) {
return STATUS_NO_ROOM;
}
// Build command buffer
buffer[0] = PICC_CMD_MF_READ;
buffer[1] = blockAddr;
// Calculate CRC_A
result = PCD_CalculateCRC(buffer, 2, &buffer[2]);
if (result != STATUS_OK) {
return result;
}
// Transmit the buffer and receive the response, validate CRC_A.
return PCD_TransceiveData(buffer, 4, buffer, bufferSize, NULL, 0, true);
} // End MIFARE_Read()
/**
* Writes 16 bytes to the active PICC.
*
* For MIFARE Classic the sector containing the block must be authenticated before calling this function.
*
* For MIFARE Ultralight the operation is called "COMPATIBILITY WRITE".
* Even though 16 bytes are transferred to the Ultralight PICC, only the least significant 4 bytes (bytes 0 to 3)
* are written to the specified address. It is recommended to set the remaining bytes 04h to 0Fh to all logic 0.
* *
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
byte MFRC522::MIFARE_Write( byte blockAddr, ///< MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The page (2-15) to write to.
byte *buffer, ///< The 16 bytes to write to the PICC
byte bufferSize ///< Buffer size, must be at least 16 bytes. Exactly 16 bytes are written.
) {
byte result;
// Sanity check
if (buffer == NULL || bufferSize < 16) {
return STATUS_INVALID;
}
// Mifare Classic protocol requires two communications to perform a write.
// Step 1: Tell the PICC we want to write to block blockAddr.
byte cmdBuffer[2];
cmdBuffer[0] = PICC_CMD_MF_WRITE;
cmdBuffer[1] = blockAddr;
result = PCD_MIFARE_Transceive(cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK.
if (result != STATUS_OK) {
return result;
}
// Step 2: Transfer the data
result = PCD_MIFARE_Transceive(buffer, bufferSize); // Adds CRC_A and checks that the response is MF_ACK.
if (result != STATUS_OK) {
return result;
}
return STATUS_OK;
} // End MIFARE_Write()
/**
* Writes a 4 byte page to the active MIFARE Ultralight PICC.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
byte MFRC522::MIFARE_Ultralight_Write( byte page, ///< The page (2-15) to write to.
byte *buffer, ///< The 4 bytes to write to the PICC
byte bufferSize ///< Buffer size, must be at least 4 bytes. Exactly 4 bytes are written.
) {
byte result;
// Sanity check
if (buffer == NULL || bufferSize < 4) {
return STATUS_INVALID;
}
// Build commmand buffer
byte cmdBuffer[6];
cmdBuffer[0] = PICC_CMD_UL_WRITE;
cmdBuffer[1] = page;
memcpy(&cmdBuffer[2], buffer, 4);
// Perform the write
result = PCD_MIFARE_Transceive(cmdBuffer, 6); // Adds CRC_A and checks that the response is MF_ACK.
if (result != STATUS_OK) {
return result;
}
return STATUS_OK;
} // End MIFARE_Ultralight_Write()
/**
* MIFARE Decrement subtracts the delta from the value of the addressed block, and stores the result in a volatile memory.
* For MIFARE Classic only. The sector containing the block must be authenticated before calling this function.
* Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001].
* Use MIFARE_Transfer() to store the result in a block.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
byte MFRC522::MIFARE_Decrement( byte blockAddr, ///< The block (0-0xff) number.
long delta ///< This number is subtracted from the value of block blockAddr.
) {
return MIFARE_TwoStepHelper(PICC_CMD_MF_DECREMENT, blockAddr, delta);
} // End MIFARE_Decrement()
/**
* MIFARE Increment adds the delta to the value of the addressed block, and stores the result in a volatile memory.
* For MIFARE Classic only. The sector containing the block must be authenticated before calling this function.
* Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001].
* Use MIFARE_Transfer() to store the result in a block.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
byte MFRC522::MIFARE_Increment( byte blockAddr, ///< The block (0-0xff) number.
long delta ///< This number is added to the value of block blockAddr.
) {
return MIFARE_TwoStepHelper(PICC_CMD_MF_INCREMENT, blockAddr, delta);
} // End MIFARE_Increment()
/**
* MIFARE Restore copies the value of the addressed block into a volatile memory.
* For MIFARE Classic only. The sector containing the block must be authenticated before calling this function.
* Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001].
* Use MIFARE_Transfer() to store the result in a block.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
byte MFRC522::MIFARE_Restore( byte blockAddr ///< The block (0-0xff) number.
) {
// The datasheet describes Restore as a two step operation, but does not explain what data to transfer in step 2.
// Doing only a single step does not work, so I chose to transfer 0L in step two.
return MIFARE_TwoStepHelper(PICC_CMD_MF_RESTORE, blockAddr, 0L);
} // End MIFARE_Restore()
/**
* Helper function for the two-step MIFARE Classic protocol operations Decrement, Increment and Restore.
*
* @return STATUS_OK on success, STATUS_??? otherwise.
*/
byte MFRC522::MIFARE_TwoStepHelper( byte command, ///< The command to use
byte blockAddr, ///< The block (0-0xff) number.
long data ///< The data to transfer in step 2
) {
byte result;
byte cmdBuffer[2]; // We only need room for 2 bytes.
// Step 1: Tell the PICC the command and block address
cmdBuffer[0] = command;
cmdBuffer[1] = blockAddr;
result = PCD_MIFARE_Transceive( cmdBuffer, 2); // Adds CRC_A and checks that the response is MF_ACK.
if (result != STATUS_OK) {
return result;
}
// Step 2: Transfer the data