-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_aux.py
1125 lines (1056 loc) · 42 KB
/
train_aux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import logging
import math
import os
import random
import test # import test.py to get mAP after each epoch
import time
from copy import deepcopy
from pathlib import Path
from threading import Thread
import numpy as np
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
import yaml
from torch.cuda import amp
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.datasets import create_dataloader
from utils.general import (
check_dataset,
check_file,
check_git_status,
check_img_size,
check_requirements,
colorstr,
fitness,
get_latest_run,
increment_path,
init_seeds,
labels_to_class_weights,
labels_to_image_weights,
one_cycle,
print_mutation,
set_logging,
strip_optimizer,
)
from utils.google_utils import attempt_download
from utils.loss import ComputeLoss, ComputeLossAuxOTA
from utils.plots import plot_evolution, plot_images, plot_labels, plot_results
from utils.torch_utils import (
ModelEMA,
intersect_dicts,
is_parallel,
select_device,
torch_distributed_zero_first,
)
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
logger = logging.getLogger(__name__)
def train(hyp, opt, device, tb_writer=None):
logger.info(
colorstr("hyperparameters: ") + ", ".join(f"{k}={v}" for k, v in hyp.items())
)
save_dir, epochs, batch_size, total_batch_size, weights, rank = (
Path(opt.save_dir),
opt.epochs,
opt.batch_size,
opt.total_batch_size,
opt.weights,
opt.global_rank,
)
# Directories
wdir = save_dir / "weights"
wdir.mkdir(parents=True, exist_ok=True) # make dir
last = wdir / "last.pt"
best = wdir / "best.pt"
results_file = save_dir / "results.txt"
# Save run settings
with open(save_dir / "hyp.yaml", "w") as f:
yaml.dump(hyp, f, sort_keys=False)
with open(save_dir / "opt.yaml", "w") as f:
yaml.dump(vars(opt), f, sort_keys=False)
# Configure
plots = not opt.evolve # create plots
cuda = device.type != "cpu"
init_seeds(2 + rank)
with open(opt.data) as f:
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
is_coco = opt.data.endswith("coco.yaml")
# Logging- Doing this before checking the dataset. Might update data_dict
loggers = {"wandb": None} # loggers dict
if rank in [-1, 0]:
opt.hyp = hyp # add hyperparameters
run_id = (
torch.load(weights).get("wandb_id")
if weights.endswith(".pt") and os.path.isfile(weights)
else None
)
wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
loggers["wandb"] = wandb_logger.wandb
data_dict = wandb_logger.data_dict
if wandb_logger.wandb:
weights, epochs, hyp = (
opt.weights,
opt.epochs,
opt.hyp,
) # WandbLogger might update weights, epochs if resuming
nc = 1 if opt.single_cls else int(data_dict["nc"]) # number of classes
names = (
["item"]
if opt.single_cls and len(data_dict["names"]) != 1
else data_dict["names"]
) # class names
assert len(names) == nc, "%g names found for nc=%g dataset in %s" % (
len(names),
nc,
opt.data,
) # check
# Model
pretrained = weights.endswith(".pt")
if pretrained:
with torch_distributed_zero_first(rank):
attempt_download(weights) # download if not found locally
ckpt = torch.load(weights, map_location=device) # load checkpoint
model = Model(
opt.cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")
).to(
device
) # create
exclude = (
["anchor"] if (opt.cfg or hyp.get("anchors")) and not opt.resume else []
) # exclude keys
state_dict = ckpt["model"].float().state_dict() # to FP32
state_dict = intersect_dicts(
state_dict, model.state_dict(), exclude=exclude
) # intersect
model.load_state_dict(state_dict, strict=False) # load
logger.info(
"Transferred %g/%g items from %s"
% (len(state_dict), len(model.state_dict()), weights)
) # report
else:
model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(
device
) # create
with torch_distributed_zero_first(rank):
check_dataset(data_dict) # check
train_path = data_dict["train"]
test_path = data_dict["val"]
# Freeze
freeze = [] # parameter names to freeze (full or partial)
for k, v in model.named_parameters():
v.requires_grad = True # train all layers
if any(x in k for x in freeze):
print("freezing %s" % k)
v.requires_grad = False
# Optimizer
nbs = 64 # nominal batch size
accumulate = max(
round(nbs / total_batch_size), 1
) # accumulate loss before optimizing
hyp["weight_decay"] *= total_batch_size * accumulate / nbs # scale weight_decay
logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
for k, v in model.named_modules():
if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter):
pg2.append(v.bias) # biases
if isinstance(v, nn.BatchNorm2d):
pg0.append(v.weight) # no decay
elif hasattr(v, "weight") and isinstance(v.weight, nn.Parameter):
pg1.append(v.weight) # apply decay
if hasattr(v, "im"):
if hasattr(v.im, "implicit"):
pg0.append(v.im.implicit)
else:
for iv in v.im:
pg0.append(iv.implicit)
if hasattr(v, "imc"):
if hasattr(v.imc, "implicit"):
pg0.append(v.imc.implicit)
else:
for iv in v.imc:
pg0.append(iv.implicit)
if hasattr(v, "imb"):
if hasattr(v.imb, "implicit"):
pg0.append(v.imb.implicit)
else:
for iv in v.imb:
pg0.append(iv.implicit)
if hasattr(v, "imo"):
if hasattr(v.imo, "implicit"):
pg0.append(v.imo.implicit)
else:
for iv in v.imo:
pg0.append(iv.implicit)
if hasattr(v, "ia"):
if hasattr(v.ia, "implicit"):
pg0.append(v.ia.implicit)
else:
for iv in v.ia:
pg0.append(iv.implicit)
if hasattr(v, "attn"):
if hasattr(v.attn, "logit_scale"):
pg0.append(v.attn.logit_scale)
if hasattr(v.attn, "q_bias"):
pg0.append(v.attn.q_bias)
if hasattr(v.attn, "v_bias"):
pg0.append(v.attn.v_bias)
if hasattr(v.attn, "relative_position_bias_table"):
pg0.append(v.attn.relative_position_bias_table)
if hasattr(v, "rbr_dense"):
if hasattr(v.rbr_dense, "weight_rbr_origin"):
pg0.append(v.rbr_dense.weight_rbr_origin)
if hasattr(v.rbr_dense, "weight_rbr_avg_conv"):
pg0.append(v.rbr_dense.weight_rbr_avg_conv)
if hasattr(v.rbr_dense, "weight_rbr_pfir_conv"):
pg0.append(v.rbr_dense.weight_rbr_pfir_conv)
if hasattr(v.rbr_dense, "weight_rbr_1x1_kxk_idconv1"):
pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_idconv1)
if hasattr(v.rbr_dense, "weight_rbr_1x1_kxk_conv2"):
pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_conv2)
if hasattr(v.rbr_dense, "weight_rbr_gconv_dw"):
pg0.append(v.rbr_dense.weight_rbr_gconv_dw)
if hasattr(v.rbr_dense, "weight_rbr_gconv_pw"):
pg0.append(v.rbr_dense.weight_rbr_gconv_pw)
if hasattr(v.rbr_dense, "vector"):
pg0.append(v.rbr_dense.vector)
if opt.adam:
optimizer = optim.Adam(
pg0, lr=hyp["lr0"], betas=(hyp["momentum"], 0.999)
) # adjust beta1 to momentum
else:
optimizer = optim.SGD(
pg0, lr=hyp["lr0"], momentum=hyp["momentum"], nesterov=True
)
optimizer.add_param_group(
{"params": pg1, "weight_decay": hyp["weight_decay"]}
) # add pg1 with weight_decay
optimizer.add_param_group({"params": pg2}) # add pg2 (biases)
logger.info(
"Optimizer groups: %g .bias, %g conv.weight, %g other"
% (len(pg2), len(pg1), len(pg0))
)
del pg0, pg1, pg2
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
if opt.linear_lr:
lf = (
lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp["lrf"]) + hyp["lrf"]
) # linear
else:
lf = one_cycle(1, hyp["lrf"], epochs) # cosine 1->hyp['lrf']
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
# plot_lr_scheduler(optimizer, scheduler, epochs)
# EMA
ema = ModelEMA(model) if rank in [-1, 0] else None
# Resume
start_epoch, best_fitness = 0, 0.0
if pretrained:
# Optimizer
if ckpt["optimizer"] is not None:
optimizer.load_state_dict(ckpt["optimizer"])
best_fitness = ckpt["best_fitness"]
# EMA
if ema and ckpt.get("ema"):
ema.ema.load_state_dict(ckpt["ema"].float().state_dict())
ema.updates = ckpt["updates"]
# Results
if ckpt.get("training_results") is not None:
results_file.write_text(ckpt["training_results"]) # write results.txt
# Epochs
start_epoch = ckpt["epoch"] + 1
if opt.resume:
assert (
start_epoch > 0
), "%s training to %g epochs is finished, nothing to resume." % (
weights,
epochs,
)
if epochs < start_epoch:
logger.info(
"%s has been trained for %g epochs. Fine-tuning for %g additional epochs."
% (weights, ckpt["epoch"], epochs)
)
epochs += ckpt["epoch"] # finetune additional epochs
del ckpt, state_dict
# Image sizes
gs = max(int(model.stride.max()), 32) # grid size (max stride)
nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
imgsz, imgsz_test = [
check_img_size(x, gs) for x in opt.img_size
] # verify imgsz are gs-multiples
# DP mode
if cuda and rank == -1 and torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
# SyncBatchNorm
if opt.sync_bn and cuda and rank != -1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
logger.info("Using SyncBatchNorm()")
# Trainloader
dataloader, dataset = create_dataloader(
train_path,
imgsz,
batch_size,
gs,
opt,
hyp=hyp,
augment=True,
cache=opt.cache_images,
rect=opt.rect,
rank=rank,
world_size=opt.world_size,
workers=opt.workers,
image_weights=opt.image_weights,
quad=opt.quad,
prefix=colorstr("train: "),
# REVIEW: add extra arguments
obb=opt.obb,
)
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
nb = len(dataloader) # number of batches
assert (
mlc < nc
), "Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g" % (
mlc,
nc,
opt.data,
nc - 1,
)
# Process 0
if rank in [-1, 0]:
testloader = create_dataloader(
test_path,
imgsz_test,
batch_size * 2,
gs,
opt, # testloader
hyp=hyp,
cache=opt.cache_images and not opt.notest,
rect=True,
rank=-1,
world_size=opt.world_size,
workers=opt.workers,
pad=0.5,
prefix=colorstr("val: "),
# REVIEW: add extra arguments
obb=opt.obb,
)[0]
if not opt.resume:
labels = np.concatenate(dataset.labels, 0)
c = torch.tensor(labels[:, 0]) # classes
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
# model._initialize_biases(cf.to(device))
if plots:
# plot_labels(labels, names, save_dir, loggers)
if tb_writer:
tb_writer.add_histogram("classes", c, 0)
# Anchors
if not opt.noautoanchor:
check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz)
model.half().float() # pre-reduce anchor precision
# DDP mode
if cuda and rank != -1:
model = DDP(
model,
device_ids=[opt.local_rank],
output_device=opt.local_rank,
# nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
find_unused_parameters=any(
isinstance(layer, nn.MultiheadAttention) for layer in model.modules()
),
)
# Model parameters
hyp["box"] *= 3.0 / nl # scale to layers
hyp["cls"] *= nc / 80.0 * 3.0 / nl # scale to classes and layers
hyp["obj"] *= (imgsz / 640) ** 2 * 3.0 / nl # scale to image size and layers
hyp["label_smoothing"] = opt.label_smoothing
model.nc = nc # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model
model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
model.class_weights = (
labels_to_class_weights(dataset.labels, nc).to(device) * nc
) # attach class weights
model.names = names
# Start training
t0 = time.time()
nw = max(
round(hyp["warmup_epochs"] * nb), 1000
) # number of warmup iterations, max(3 epochs, 1k iterations)
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # P, R, [email protected], [email protected], val_loss(box, obj, cls)
scheduler.last_epoch = start_epoch - 1 # do not move
scaler = amp.GradScaler(enabled=cuda)
compute_loss_ota = ComputeLossAuxOTA(model) # init loss class
compute_loss = ComputeLoss(model) # init loss class
logger.info(
f"Image sizes {imgsz} train, {imgsz_test} test\n"
f"Using {dataloader.num_workers} dataloader workers\n"
f"Logging results to {save_dir}\n"
f"Starting training for {epochs} epochs..."
)
torch.save(model, wdir / "init.pt")
for epoch in range(
start_epoch, epochs
): # epoch ------------------------------------------------------------------
model.train()
# Update image weights (optional)
if opt.image_weights:
# Generate indices
if rank in [-1, 0]:
cw = (
model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc
) # class weights
iw = labels_to_image_weights(
dataset.labels, nc=nc, class_weights=cw
) # image weights
dataset.indices = random.choices(
range(dataset.n), weights=iw, k=dataset.n
) # rand weighted idx
# Broadcast if DDP
if rank != -1:
indices = (
torch.tensor(dataset.indices)
if rank == 0
else torch.zeros(dataset.n)
).int()
dist.broadcast(indices, 0)
if rank != 0:
dataset.indices = indices.cpu().numpy()
# Update mosaic border
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
# REVIEW: correct mloss size
# mloss = torch.zeros(4, device=device) # mean losses
mloss = torch.zeros(5, device=device) # mean losses
if rank != -1:
dataloader.sampler.set_epoch(epoch)
pbar = enumerate(dataloader)
# REVIEW: correct logger info
# logger.info(
# ("\n" + "%10s" * 8)
# % ("Epoch", "gpu_mem", "box", "obj", "cls", "total", "labels", "img_size")
# )
logger.info(
("\n" + "%10s" * 9)
% (
"Epoch",
"gpu_mem",
"box",
"obj",
"cls",
"rad",
"total",
"labels",
"img_size",
)
)
if rank in [-1, 0]:
pbar = tqdm(pbar, total=nb) # progress bar
optimizer.zero_grad()
for i, (
imgs,
targets,
paths,
_,
# REVIEW: get cv_imgs from __get_item__
cv_imgs,
) in (
pbar
): # batch -------------------------------------------------------------
ni = i + nb * epoch # number integrated batches (since train start)
imgs = (
imgs.to(device, non_blocking=True).float() / 255.0
) # uint8 to float32, 0-255 to 0.0-1.0
# Warmup
if ni <= nw:
xi = [0, nw] # x interp
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
accumulate = max(
1, np.interp(ni, xi, [1, nbs / total_batch_size]).round()
)
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x["lr"] = np.interp(
ni,
xi,
[
hyp["warmup_bias_lr"] if j == 2 else 0.0,
x["initial_lr"] * lf(epoch),
],
)
if "momentum" in x:
x["momentum"] = np.interp(
ni, xi, [hyp["warmup_momentum"], hyp["momentum"]]
)
# Multi-scale
if opt.multi_scale:
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
sf = sz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [
math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
] # new shape (stretched to gs-multiple)
imgs = F.interpolate(
imgs, size=ns, mode="bilinear", align_corners=False
)
# Forward
with amp.autocast(enabled=cuda):
pred = model(imgs) # forward
loss, loss_items = compute_loss_ota(
pred,
targets.to(device),
imgs,
# REVIEW: add extra parameters
model,
i,
epoch,
tb_writer,
cv_imgs,
) # loss scaled by batch_size
if rank != -1:
loss *= (
opt.world_size
) # gradient averaged between devices in DDP mode
if opt.quad:
loss *= 4.0
# Backward
scaler.scale(loss).backward()
# Optimize
if ni % accumulate == 0:
scaler.step(optimizer) # optimizer.step
scaler.update()
optimizer.zero_grad()
if ema:
ema.update(model)
# Print
if rank in [-1, 0]:
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = "%.3gG" % (
torch.cuda.memory_reserved() / 1e9
if torch.cuda.is_available()
else 0
) # (GB)
# REVIEW: tweak description
# s = ("%10s" * 2 + "%10.4g" * 6) % (
# "%g/%g" % (epoch, epochs - 1),
# mem,
# *mloss,
# targets.shape[0],
# imgs.shape[-1],
# )
s = ("%10s" * 2 + "%10.4g" * 7) % (
"%g/%g" % (epoch, epochs - 1),
mem,
*mloss,
targets.shape[0],
imgs.shape[-1],
)
pbar.set_description(s)
# Plot
if plots and ni < 10:
f = save_dir / f"train_batch{ni}.jpg" # filename
# REVIEW: add args
args = {
"images": imgs,
"targets": targets,
"paths": paths,
"fname": f,
"obb": opt.obb,
}
# REVIEW: change thread args to dict
# Thread(
# target=plot_images, args=(imgs, targets, paths, f), daemon=True
# ).start()
Thread(target=plot_images, kargs=args, daemon=True).start()
# if tb_writer:
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
# tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph
elif plots and ni == 10 and wandb_logger.wandb:
wandb_logger.log(
{
"Mosaics": [
wandb_logger.wandb.Image(str(x), caption=x.name)
for x in save_dir.glob("train*.jpg")
if x.exists()
]
}
)
# end batch ------------------------------------------------------------------------------------------------
# end epoch ----------------------------------------------------------------------------------------------------
# Scheduler
lr = [x["lr"] for x in optimizer.param_groups] # for tensorboard
scheduler.step()
# DDP process 0 or single-GPU
if rank in [-1, 0]:
# mAP
ema.update_attr(
model,
include=["yaml", "nc", "hyp", "gr", "names", "stride", "class_weights"],
)
final_epoch = epoch + 1 == epochs
if not opt.notest or final_epoch: # Calculate mAP
wandb_logger.current_epoch = epoch + 1
results, maps, times = test.test(
data_dict,
batch_size=batch_size * 2,
imgsz=imgsz_test,
model=ema.ema,
single_cls=opt.single_cls,
dataloader=testloader,
save_dir=save_dir,
verbose=nc < 50 and final_epoch,
plots=plots and final_epoch,
wandb_logger=wandb_logger,
compute_loss=compute_loss,
is_coco=is_coco,
v5_metric=opt.v5_metric,
# REVIEW: add extra parameters
tb_writer=tb_writer,
epoch=epoch,
obb=opt.obb,
)
# Write
with open(results_file, "a") as f:
# REVIEW: change output str count
# f.write(s + "%10.4g" * 7 % results + "\n") # append metrics, val_loss
f.write(s + "%10.4g" * 8 % results + "\n") # append metrics, val_loss
if len(opt.name) and opt.bucket:
os.system(
"gsutil cp %s gs://%s/results/results%s.txt"
% (results_file, opt.bucket, opt.name)
)
# Log
# REVIEW: add radian losses in TB
tags = [
"train/box_loss",
"train/obj_loss",
"train/cls_loss",
"train/rad_loss", # train loss
"metrics/precision",
"metrics/recall",
"metrics/mAP_0.5",
"metrics/mAP_0.5:0.95",
"val/box_loss",
"val/obj_loss",
"val/cls_loss",
"val/rad_loss", # val loss
"x/lr0",
"x/lr1",
"x/lr2",
] # params
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
if tb_writer:
tb_writer.add_scalar(tag, x, epoch) # tensorboard
if wandb_logger.wandb:
wandb_logger.log({tag: x}) # W&B
# Update best mAP
fi = fitness(
np.array(results).reshape(1, -1)
) # weighted combination of [P, R, [email protected], [email protected]]
if fi > best_fitness:
best_fitness = fi
wandb_logger.end_epoch(best_result=best_fitness == fi)
# Save model
if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
ckpt = {
"epoch": epoch,
"best_fitness": best_fitness,
"training_results": results_file.read_text(),
"model": deepcopy(
model.module if is_parallel(model) else model
).half(),
"ema": deepcopy(ema.ema).half(),
"updates": ema.updates,
"optimizer": optimizer.state_dict(),
"wandb_id": wandb_logger.wandb_run.id
if wandb_logger.wandb
else None,
}
# Save last, best and delete
torch.save(ckpt, last)
if best_fitness == fi:
torch.save(ckpt, best)
if (best_fitness == fi) and (epoch >= 200):
torch.save(ckpt, wdir / "best_{:03d}.pt".format(epoch))
if epoch == 0:
torch.save(ckpt, wdir / "epoch_{:03d}.pt".format(epoch))
elif ((epoch + 1) % 25) == 0:
torch.save(ckpt, wdir / "epoch_{:03d}.pt".format(epoch))
elif epoch >= (epochs - 5):
torch.save(ckpt, wdir / "epoch_{:03d}.pt".format(epoch))
if wandb_logger.wandb:
if (
(epoch + 1) % opt.save_period == 0 and not final_epoch
) and opt.save_period != -1:
wandb_logger.log_model(
last.parent, opt, epoch, fi, best_model=best_fitness == fi
)
del ckpt
# end epoch ----------------------------------------------------------------------------------------------------
# end training
if rank in [-1, 0]:
# Plots
if plots:
plot_results(save_dir=save_dir) # save as results.png
if wandb_logger.wandb:
files = [
"results.png",
"confusion_matrix.png",
*[f"{x}_curve.png" for x in ("F1", "PR", "P", "R")],
]
wandb_logger.log(
{
"Results": [
wandb_logger.wandb.Image(str(save_dir / f), caption=f)
for f in files
if (save_dir / f).exists()
]
}
)
# Test best.pt
logger.info(
"%g epochs completed in %.3f hours.\n"
% (epoch - start_epoch + 1, (time.time() - t0) / 3600)
)
if opt.data.endswith("coco.yaml") and nc == 80: # if COCO
for m in (last, best) if best.exists() else (last): # speed, mAP tests
results, _, _ = test.test(
opt.data,
batch_size=batch_size * 2,
imgsz=imgsz_test,
conf_thres=0.001,
iou_thres=0.7,
model=attempt_load(m, device).half(),
single_cls=opt.single_cls,
dataloader=testloader,
save_dir=save_dir,
save_json=True,
plots=False,
is_coco=is_coco,
v5_metric=opt.v5_metric,
# REVIEW: add extra parameters
tb_writer=tb_writer,
epoch=epoch,
obb=opt.obb,
)
# Strip optimizers
final = best if best.exists() else last # final model
for f in last, best:
if f.exists():
strip_optimizer(f) # strip optimizers
if opt.bucket:
os.system(f"gsutil cp {final} gs://{opt.bucket}/weights") # upload
if wandb_logger.wandb and not opt.evolve: # Log the stripped model
wandb_logger.wandb.log_artifact(
str(final),
type="model",
name="run_" + wandb_logger.wandb_run.id + "_model",
aliases=["last", "best", "stripped"],
)
wandb_logger.finish_run()
else:
dist.destroy_process_group()
torch.cuda.empty_cache()
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--weights", type=str, default="yolo7.pt", help="initial weights path"
)
parser.add_argument("--cfg", type=str, default="", help="model.yaml path")
parser.add_argument(
"--data", type=str, default="data/coco.yaml", help="data.yaml path"
)
parser.add_argument(
"--hyp",
type=str,
default="data/hyp.scratch.p5.yaml",
help="hyperparameters path",
)
parser.add_argument("--epochs", type=int, default=300)
parser.add_argument(
"--batch-size", type=int, default=16, help="total batch size for all GPUs"
)
parser.add_argument(
"--img-size",
nargs="+",
type=int,
default=[640, 640],
help="[train, test] image sizes",
)
parser.add_argument("--rect", action="store_true", help="rectangular training")
parser.add_argument(
"--resume",
nargs="?",
const=True,
default=False,
help="resume most recent training",
)
parser.add_argument(
"--nosave", action="store_true", help="only save final checkpoint"
)
parser.add_argument("--notest", action="store_true", help="only test final epoch")
parser.add_argument(
"--noautoanchor", action="store_true", help="disable autoanchor check"
)
parser.add_argument("--evolve", action="store_true", help="evolve hyperparameters")
parser.add_argument("--bucket", type=str, default="", help="gsutil bucket")
parser.add_argument(
"--cache-images", action="store_true", help="cache images for faster training"
)
parser.add_argument(
"--image-weights",
action="store_true",
help="use weighted image selection for training",
)
parser.add_argument(
"--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
)
parser.add_argument(
"--multi-scale", action="store_true", help="vary img-size +/- 50%%"
)
parser.add_argument(
"--single-cls",
action="store_true",
help="train multi-class data as single-class",
)
parser.add_argument(
"--adam", action="store_true", help="use torch.optim.Adam() optimizer"
)
parser.add_argument(
"--sync-bn",
action="store_true",
help="use SyncBatchNorm, only available in DDP mode",
)
parser.add_argument(
"--local_rank", type=int, default=-1, help="DDP parameter, do not modify"
)
parser.add_argument(
"--workers", type=int, default=8, help="maximum number of dataloader workers"
)
parser.add_argument("--project", default="runs/train", help="save to project/name")
parser.add_argument("--entity", default=None, help="W&B entity")
parser.add_argument("--name", default="exp", help="save to project/name")
parser.add_argument(
"--exist-ok",
action="store_true",
help="existing project/name ok, do not increment",
)
parser.add_argument("--quad", action="store_true", help="quad dataloader")
parser.add_argument("--linear-lr", action="store_true", help="linear LR")
parser.add_argument(
"--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon"
)
parser.add_argument(
"--upload_dataset",
action="store_true",
help="Upload dataset as W&B artifact table",
)
parser.add_argument(
"--bbox_interval",
type=int,
default=-1,
help="Set bounding-box image logging interval for W&B",
)
parser.add_argument(
"--save_period",
type=int,
default=-1,
help='Log model after every "save_period" epoch',
)
parser.add_argument(
"--artifact_alias",
type=str,
default="latest",
help="version of dataset artifact to be used",
)
parser.add_argument(
"--v5-metric",
action="store_true",
help="assume maximum recall as 1.0 in AP calculation",
)
# REVIEW: add obb flag
parser.add_argument("--obb", action="store_true", default=True, help="obb flag")
opt = parser.parse_args()
# Set DDP variables
opt.world_size = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
opt.global_rank = int(os.environ["RANK"]) if "RANK" in os.environ else -1
set_logging(opt.global_rank)
# if opt.global_rank in [-1, 0]:
# check_git_status()
# check_requirements()
# Resume
wandb_run = check_wandb_resume(opt)
if opt.resume and not wandb_run: # resume an interrupted run
ckpt = (
opt.resume if isinstance(opt.resume, str) else get_latest_run()
) # specified or most recent path
assert os.path.isfile(ckpt), "ERROR: --resume checkpoint does not exist"
apriori = opt.global_rank, opt.local_rank
with open(Path(ckpt).parent.parent / "opt.yaml") as f:
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace
(
opt.cfg,
opt.weights,
opt.resume,
opt.batch_size,
opt.global_rank,
opt.local_rank,
) = (
"",
ckpt,
True,
opt.total_batch_size,
*apriori,
) # reinstate
logger.info("Resuming training from %s" % ckpt)
else:
# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
opt.data, opt.cfg, opt.hyp = (
check_file(opt.data),
check_file(opt.cfg),
check_file(opt.hyp),
) # check files
assert len(opt.cfg) or len(
opt.weights
), "either --cfg or --weights must be specified"
opt.img_size.extend(
[opt.img_size[-1]] * (2 - len(opt.img_size))
) # extend to 2 sizes (train, test)
opt.name = "evolve" if opt.evolve else opt.name
opt.save_dir = increment_path(
Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve
) # increment run
# DDP mode
opt.total_batch_size = opt.batch_size
device = select_device(opt.device, batch_size=opt.batch_size)
if opt.local_rank != -1:
assert torch.cuda.device_count() > opt.local_rank
torch.cuda.set_device(opt.local_rank)
device = torch.device("cuda", opt.local_rank)
dist.init_process_group(
backend="nccl", init_method="env://"
) # distributed backend