forked from microsoft/Phi-3CookBook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
phi3imageembedding.py
270 lines (230 loc) · 15.6 KB
/
phi3imageembedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Reference https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/blob/main/image_embedding_phi3_v.py
# Import required Python Libraries
import math
import torch
from transformers import CLIPVisionModel, PretrainedConfig
from transformers import CLIPVisionConfig
from transformers.utils import logging
from datetime import datetime
# Import necessary libraries
import torch.nn as nn
# Set up logging
logger = logging.get_logger(__name__)
# Define the configuration for the CLIPVisionModel
CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
attention_dropout=0.0,
dropout=0.0,
hidden_act="quick_gelu",
hidden_size=1024,
image_size=336,
initializer_factor=1.0,
initializer_range=0.02,
intermediate_size=4096,
layer_norm_eps=1e-05,
num_attention_heads=16,
num_channels=3,
num_hidden_layers=24,
patch_size=14,
projection_dim=768
)
# Define the Phi3ImageEmbedding class
class Phi3ImageEmbedding(nn.Module):
"""Phi3 Image embedding."""
def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None:
super().__init__()
# Set up the embedding dropout
hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
self.drop = nn.Dropout(embd_drop)
else:
self.drop = None
self.wte = wte
# Set up the image processor based on the configuration
if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model':
assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel'
assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel'
assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel'
assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336'
clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
self.img_processor = CLIPVisionModel(clip_config)
image_dim_out = config.img_processor['image_dim_out']
self.num_img_tokens = config.img_processor['num_img_tokens']
else:
raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented')
self.image_dim_out = image_dim_out
self.img_sizes = None
# Set up the HD transform parameters
self.use_hd_transform = kwargs.get('use_hd_transform', False)
self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
if self.with_learnable_separator:
assert self.use_hd_transform, 'learnable separator is only for hd transform'
self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4]))
self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4]))
logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')
# Set up the image projection based on the projection_cls
projection_cls = kwargs.get('projection_cls', 'linear')
if projection_cls == 'linear':
self.img_projection = nn.Linear(image_dim_out, hidden_size)
elif projection_cls == 'mlp' and self.use_hd_transform:
dim_projection = hidden_size
depth = 2
layers = [nn.Linear(image_dim_out * 4, dim_projection)]
for _ in range(1, depth):
layers.extend([nn.GELU(),
nn.Linear(dim_projection, dim_projection)])
self.img_projection = nn.Sequential(*layers)
elif projection_cls == 'mlp':
dim_projection = hidden_size
depth = 2
layers = [nn.Linear(image_dim_out, dim_projection)]
for _ in range(1, depth):
layers.extend([nn.GELU(),
nn.Linear(dim_projection, dim_projection)])
self.img_projection = nn.Sequential(*layers)
else:
raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
self.vocab_size = config.vocab_size
self.img_features = None
# Set up the layer index and type of feature for the image processor
if isinstance(config.img_processor, dict):
self.layer_idx = config.img_processor.get('layer_idx', -2)
self.type_feature = config.img_processor.get('type_feature', 'patch')
else:
self.layer_idx = -2
self.type_feature = 'patch'
def set_img_features(self, img_features: torch.FloatTensor) -> None:
self.img_features = img_features
def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
self.img_sizes = img_sizes
def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
LAYER_IDX = self.layer_idx
TYPE_FEATURE = self.type_feature
img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
img_feature = img_processor_output.hidden_states[LAYER_IDX]
if TYPE_FEATURE == "patch":
patch_feature = img_feature[:, 1:]
return patch_feature
if TYPE_FEATURE == "cls_patch":
return img_feature
raise NotImplementedError
def forward(self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None) -> torch.FloatTensor:
MAX_INPUT_ID = int(1e9)
img_embeds = pixel_values
img_sizes = image_sizes
if self.img_features is not None:
img_embeds = self.img_features.clone()
self.img_features = None
if self.img_sizes is not None:
img_sizes = self.img_sizes
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
with torch.no_grad():
positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=False)
select = False
if isinstance(self.img_projection, nn.Sequential):
target_device = self.img_projection[0].bias.device
target_dtype = self.img_projection[0].bias.dtype
else: # It's a single nn.Linear layer
target_device = self.img_projection.bias.device
target_dtype = self.img_projection.bias.dtype
if len(positions.tolist()) > 0:
with torch.no_grad():
g_values = abs(input_ids[positions[:, 0], positions[:, 1]])
if self.use_hd_transform and img_sizes is not None and len(img_sizes):
hd_transform = True
assert img_embeds.ndim == 5, f'img_embeds size: {img_embeds.size()}, expect 5D tensor for hd transform'
img_features = self.get_img_features(img_embeds.flatten(0, 1))
base_feat_height = base_feat_width = int(img_features.shape[1] ** 0.5)
assert base_feat_height == 24 and base_feat_width == 24, f'base_feat_height: {base_feat_height}, base_feat_width: {base_feat_width}, expect 24x24 features for hd transform'
img_features = img_features.view(bs, -1, base_feat_height * base_feat_width, self.image_dim_out)
C = self.image_dim_out
H = base_feat_height
output_imgs = []
output_len = []
if isinstance(img_sizes, torch.Tensor):
img_sizes = img_sizes.view(-1, 2)
for _bs in range(bs):
h, w = img_sizes[_bs]
h = h // 336
w = w // 336
B_ = h * w
global_img_feature = img_features[_bs, :1]
glb_img = global_img_feature.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous()
temp_glb_GN = self.sub_GN.repeat(1, H//2, 1, 1)
glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C)
sub_img = img_features[_bs, 1:]
sub_img = sub_img[:B_]
sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous()
sub_img = sub_img.reshape(1, h, w, 12, 12, -1).permute(0,1,3,2,4,5).reshape(1,h*12,w*12,4*C)
temp_sub_GN = self.sub_GN.repeat(1, h*12, 1, 1)
sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C)
if self.hd_transform_order == 'glb_sub':
output_imgs.append(torch.cat([glb_img, self.glb_GN, sub_img], dim=1))
elif self.hd_transform_order == 'sub_glb':
output_imgs.append(torch.cat([sub_img, self.glb_GN, glb_img], dim=1))
else:
raise NotImplementedError(f'hd_transform_order = {self.hd_transform_order}, not implemented')
temp_len = int((h*w+1)*144 + 1 + (h+1)*12)
assert temp_len == output_imgs[-1].shape[1], f'temp_len: {temp_len}, output_imgs[-1].shape[1]: {output_imgs[-1].shape[1]}'
output_len.append(temp_len)
num_img_tokens = output_len
img_set_tensor = []
for _output_img in output_imgs:
img_feature_proj = self.img_projection(_output_img.to(target_device).to(target_dtype))
img_set_tensor.append(img_feature_proj)
logger.info(f'img_embeds size: {img_embeds.size()}, image sizes: {img_sizes} loading time {datetime.now() - start_time}')
elif img_embeds.ndim == 4:
selected_g_values = g_values[::self.num_img_tokens]
assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}'
start_time = datetime.now()
tt = (
self.get_img_features(img_embeds)
.to(target_device)
.to(target_dtype)
.reshape(-1, self.image_dim_out)
)
logger.info(f'img_embeds size: {img_embeds.size()}, loading time {datetime.now() - start_time}')
img_set_tensor = self.img_projection(tt)
elif img_embeds.ndim == 3:
selected_g_values = g_values[::self.num_img_tokens]
assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}'
tt = (
img_embeds
.to(target_device)
.to(target_dtype)
.view(-1, self.image_dim_out)
)
img_set_tensor = self.img_projection(tt)
else:
raise NotImplementedError
select = True
with torch.no_grad():
input_ids.clamp_min_(0).clamp_max_(self.vocab_size)
hidden_states = self.wte(input_ids)
if select:
if hd_transform:
idx = 0
for i, cnt in enumerate(num_img_tokens):
hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = (
img_set_tensor[i]
.to(hidden_states.dtype)
.to(hidden_states.device)
)
idx += cnt
else:
idx = 0
assert len(selected_g_values) * self.num_img_tokens == len(img_set_tensor), f'len(selected_g_values) * self.num_img_tokens = {len(selected_g_values) * self.num_img_tokens}, len(img_set_tensor) = {len(img_set_tensor)}'
for i, g in enumerate(selected_g_values):
cnt = self.num_img_tokens
hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = (
img_set_tensor[i * cnt : (i + 1) * cnt]
.to(hidden_states.dtype)
.to(hidden_states.device)
)
idx += cnt
if self.drop is not None:
hidden_states = self.drop(hidden_states)
return hidden_states