-
Notifications
You must be signed in to change notification settings - Fork 0
/
rootPowerInverseCalculator.m
49 lines (28 loc) · 1.47 KB
/
rootPowerInverseCalculator.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
function [expressionExpanded, powerOfZeta, inverse,inversePowerOfZeta] = rootPowerInverseCalculator(rootIndex, sign, power)
% Inputs:
% - rootIndex: C0, C1, .... , C15
% (Note: negatives are not needed in FFT)
% - sign = 0,1 (0=positive/odd ; 1=negative/even)
% C0, -C0, C1, -C1, C2, -C2, ....
% - power: Power of inverse (example: [C_1^4]^(-1)
syms y
exponents = [0,16,8,24,4,20,12,28,2,18,10,26,6,22,14,30,1,17,9,25,5,21,13,29,3,19,11,27,7,23,15,31];
zeta = y^2;
indexOfExponentToUse = 2*(rootIndex)+sign+1;
exponentToUse = exponents(indexOfExponentToUse); % zeta will be elevated to zeta^exponentToUse
expressionToEvaluate = polynomialReduce(expand((zeta^exponentToUse)^power),y^32+1); % This has (zeta^exponentToUse) = C_i and (zeta^exponentToUse)^power = C_i^power
powerOfZeta = exponentToUse;
expressionExpanded = expressionToEvaluate;
oneInRing = polynomialReduce(1,y^32+1);
inverse = 0;
for i=0:64 %It could be 32 but not sure, but for sure 64
possibleInverse = polynomialReduce(expand(zeta^i),y^32+1);
expressionTemp = polynomialReduce(expand(expressionToEvaluate * possibleInverse),y^32+1);
%isequal(expressionTemp,oneInRing)
if isequal(expressionTemp,oneInRing)
inverse = possibleInverse;
inversePowerOfZeta = i;
break
end
end
end