forked from akanyaani/gpt-2-tensorflow2.0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_gpt2.py
77 lines (59 loc) · 3.22 KB
/
train_gpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import glob
import json
import click
from data_pipeline import input_fn
from gpt2_model import *
_ROOT = os.path.abspath(os.path.dirname(__file__))
LOG_DIR = _ROOT + "/log"
MODEL_DIR = _ROOT + "/model"
@click.command()
@click.option('--num-layers', type=int, default=8, show_default=True, help="No. of decoder layers")
@click.option('--embedding-size', type=int, default=768, show_default=True, help="Embedding size")
@click.option('--num-heads', type=int, default=8, show_default=True, help="Number of heads")
@click.option('--dff', type=int, default=3072, show_default=True, help="Filter Size")
@click.option('--max-seq-len', type=int, default=515, show_default=True, help="Seq length")
@click.option('--vocab-size', type=int, default=24512, show_default=True, help="Vocab size")
@click.option('--optimizer', type=str, default="adam", show_default=True, help="optimizer type")
@click.option('--batch-size', type=int, default=8, show_default=True, help="optimizer type")
@click.option('--learning-rate', type=float, default=0.001, show_default=True, help="learning rate")
@click.option('--graph-mode', type=bool, default=False, show_default=False, help="TF run mode")
@click.option('--distributed', type=bool, default=False, show_default=False, help="distributed training")
def train(num_layers, embedding_size, num_heads, dff, max_seq_len, vocab_size,
optimizer, batch_size, learning_rate, graph_mode, distributed):
par_map = {"num_layers": num_layers, "d_model": embedding_size,
"num_heads": num_heads, "dff": dff,
"max_seq_len": max_seq_len, "vocab_size": vocab_size}
# exp_name = "_".join(['{}_{}'.format(k, v) for k, v in par_map.items()])
if not os.path.exists(MODEL_DIR):
os.makedirs(MODEL_DIR)
with open(MODEL_DIR + '/model_par.json', 'w') as f:
json.dump(par_map, f)
tf_records = glob.glob((_ROOT + "/data/tf_records/*.tfrecord"))
train_percent = int(len(tf_records) * (85 / 100))
print("No. of tf records:- ", len(tf_records))
train_tf_records = tf_records[:train_percent]
test_tf_records = tf_records[train_percent:]
train_dataset = input_fn(train_tf_records, batch_size=batch_size)
test_dataset = input_fn(test_tf_records, batch_size=batch_size)
if distributed:
mirrored_strategy = tf.distribute.MirroredStrategy()
train_dataset = mirrored_strategy.experimental_distribute_dataset(train_dataset)
test_dataset = mirrored_strategy.experimental_distribute_dataset(test_dataset)
with mirrored_strategy.scope():
model = Gpt2(num_layers, embedding_size, num_heads, dff, max_seq_len, vocab_size,
optimizer=optimizer, learning_rate=learning_rate)
model.create_optimizer()
model.create_checkpoint_manager(MODEL_DIR, load_model=False)
model.create_summary_writer(LOG_DIR)
model.mirrored_strategy = mirrored_strategy
model.global_batch_size = tf.cast(batch_size, tf.float32)
else:
model = Gpt2(num_layers, embedding_size, num_heads, dff, max_seq_len, vocab_size,
optimizer=optimizer, learning_rate=learning_rate)
model.create_optimizer()
model.create_checkpoint_manager(MODEL_DIR, load_model=False)
model.create_summary_writer(LOG_DIR)
model.fit([train_dataset, test_dataset], graph_mode)
print("Training Done................")
if __name__ == "__main__":
train()