diff --git a/com.ibm.wala.cast.python.ml.test/source/com/ibm/wala/cast/python/ml/test/TestMNISTExamples.java b/com.ibm.wala.cast.python.ml.test/source/com/ibm/wala/cast/python/ml/test/TestMNISTExamples.java index e1bb06cd..54967bcf 100644 --- a/com.ibm.wala.cast.python.ml.test/source/com/ibm/wala/cast/python/ml/test/TestMNISTExamples.java +++ b/com.ibm.wala.cast.python.ml.test/source/com/ibm/wala/cast/python/ml/test/TestMNISTExamples.java @@ -54,6 +54,12 @@ public void testEx1Tensors() throws IllegalArgumentException, CancelException, I checkTensorOps( Ex1URL, (PropagationCallGraphBuilder cgBuilder, CallGraph CG, TensorTypeAnalysis result) -> { + CAstCallGraphUtil.AVOID_DUMP = false; + CAstCallGraphUtil.dumpCG( + (SSAContextInterpreter) cgBuilder.getContextInterpreter(), + cgBuilder.getPointerAnalysis(), + CG); + String in = "[{[D:Symbolic,n, D:Compound,[D:Constant,28, D:Constant,28]] of pixel}]"; String out = "[{[D:Symbolic,?, D:Constant,28, D:Constant,28, D:Constant,1] of pixel}]"; checkTensorOp(cgBuilder, CG, result, "reshape", in, out); diff --git a/com.ibm.wala.cast.python.ml.test/source/com/ibm/wala/cast/python/ml/test/TestTensorflow2Model.java b/com.ibm.wala.cast.python.ml.test/source/com/ibm/wala/cast/python/ml/test/TestTensorflow2Model.java index 45b8648c..69eea98b 100644 --- a/com.ibm.wala.cast.python.ml.test/source/com/ibm/wala/cast/python/ml/test/TestTensorflow2Model.java +++ b/com.ibm.wala.cast.python.ml.test/source/com/ibm/wala/cast/python/ml/test/TestTensorflow2Model.java @@ -2759,6 +2759,21 @@ public void testDecoratedFunctions() test("tf2_test_decorated_functions.py", "test_function4", 1, 1, 2); } + @Test + public void testReshape() throws ClassHierarchyException, CancelException, IOException { + test("tf2_test_reshape.py", "f", 1, 1, 2); + } + + @Test + public void testReshape2() throws ClassHierarchyException, CancelException, IOException { + test("tf2_test_reshape2.py", "f", 1, 1, 2); + } + + @Test + public void testReshape3() throws ClassHierarchyException, CancelException, IOException { + test("tf2_test_reshape3.py", "f", 1, 1, 2); + } + private void test( String filename, String functionName, diff --git a/com.ibm.wala.cast.python.ml/data/tensorflow.xml b/com.ibm.wala.cast.python.ml/data/tensorflow.xml index adf31dc5..57f46b18 100644 --- a/com.ibm.wala.cast.python.ml/data/tensorflow.xml +++ b/com.ibm.wala.cast.python.ml/data/tensorflow.xml @@ -85,6 +85,7 @@ + @@ -399,11 +400,12 @@ + - + diff --git a/com.ibm.wala.cast.python.test/data/tf2_test_reshape.py b/com.ibm.wala.cast.python.test/data/tf2_test_reshape.py new file mode 100644 index 00000000..bf23003d --- /dev/null +++ b/com.ibm.wala.cast.python.test/data/tf2_test_reshape.py @@ -0,0 +1,12 @@ +# https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/reshape + +import tensorflow as tf + + +def f(a): + pass + + +t1 = tf.ones([2, 3]) +t2 = tf.reshape(t1, [6]) +f(t2) diff --git a/com.ibm.wala.cast.python.test/data/tf2_test_reshape2.py b/com.ibm.wala.cast.python.test/data/tf2_test_reshape2.py new file mode 100644 index 00000000..77d2180e --- /dev/null +++ b/com.ibm.wala.cast.python.test/data/tf2_test_reshape2.py @@ -0,0 +1,145 @@ +# https://raw.githubusercontent.com/aymericdamien/TensorFlow-Examples/dd2e6dcd9603d5de008d8c766453162d0204affa/examples/3_NeuralNetworks/convolutional_network.py +""" Convolutional Neural Network. + +Build and train a convolutional neural network with TensorFlow. +This example is using the MNIST database of handwritten digits +(http://yann.lecun.com/exdb/mnist/) + +This example is using TensorFlow layers API, see 'convolutional_network_raw' +example for a raw implementation with variables. + +Author: Aymeric Damien +Project: https://github.com/aymericdamien/TensorFlow-Examples/ +""" +from __future__ import division, print_function, absolute_import + +# Import MNIST data +from tensorflow.examples.tutorials.mnist import input_data + +mnist = input_data.read_data_sets("/tmp/data/", one_hot=False) + +import tensorflow as tf + +# Training Parameters +learning_rate = 0.001 +num_steps = 2000 +batch_size = 128 + +# Network Parameters +num_input = 784 # MNIST data input (img shape: 28*28) +num_classes = 10 # MNIST total classes (0-9 digits) +dropout = 0.75 # Dropout, probability to keep units + + +def f(a): + pass + + +# Create the neural network +def conv_net(x_dict, n_classes, dropout, reuse, is_training): + # Define a scope for reusing the variables + with tf.variable_scope("ConvNet", reuse=reuse): + # TF Estimator input is a dict, in case of multiple inputs + x = x_dict["images"] + + # MNIST data input is a 1-D vector of 784 features (28*28 pixels) + # Reshape to match picture format [Height x Width x Channel] + # Tensor input become 4-D: [Batch Size, Height, Width, Channel] + x = tf.reshape(x, shape=[-1, 28, 28, 1]) + f(x) + + # Convolution Layer with 32 filters and a kernel size of 5 + conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu) + # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 + conv1 = tf.layers.max_pooling2d(conv1, 2, 2) + + # Convolution Layer with 64 filters and a kernel size of 3 + conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu) + # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 + conv2 = tf.layers.max_pooling2d(conv2, 2, 2) + + # Flatten the data to a 1-D vector for the fully connected layer + fc1 = tf.contrib.layers.flatten(conv2) + + # Fully connected layer (in tf contrib folder for now) + fc1 = tf.layers.dense(fc1, 1024) + # Apply Dropout (if is_training is False, dropout is not applied) + fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training) + + # Output layer, class prediction + out = tf.layers.dense(fc1, n_classes) + + return out + + +# Define the model function (following TF Estimator Template) +def model_fn(features, labels, mode): + # Build the neural network + # Because Dropout have different behavior at training and prediction time, we + # need to create 2 distinct computation graphs that still share the same weights. + logits_train = conv_net( + features, num_classes, dropout, reuse=False, is_training=True + ) + logits_test = conv_net( + features, num_classes, dropout, reuse=True, is_training=False + ) + + # Predictions + pred_classes = tf.argmax(logits_test, axis=1) + pred_probas = tf.nn.softmax(logits_test) + + # If prediction mode, early return + if mode == tf.estimator.ModeKeys.PREDICT: + return tf.estimator.EstimatorSpec(mode, predictions=pred_classes) + + # Define loss and optimizer + loss_op = tf.reduce_mean( + tf.nn.sparse_softmax_cross_entropy_with_logits( + logits=logits_train, labels=tf.cast(labels, dtype=tf.int32) + ) + ) + optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) + train_op = optimizer.minimize(loss_op, global_step=tf.train.get_global_step()) + + # Evaluate the accuracy of the model + acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes) + + # TF Estimators requires to return a EstimatorSpec, that specify + # the different ops for training, evaluating, ... + estim_specs = tf.estimator.EstimatorSpec( + mode=mode, + predictions=pred_classes, + loss=loss_op, + train_op=train_op, + eval_metric_ops={"accuracy": acc_op}, + ) + + return estim_specs + + +# Build the Estimator +model = tf.estimator.Estimator(model_fn) + +# Define the input function for training +input_fn = tf.estimator.inputs.numpy_input_fn( + x={"images": mnist.train.images}, + y=mnist.train.labels, + batch_size=batch_size, + num_epochs=None, + shuffle=True, +) +# Train the Model +model.train(input_fn, steps=num_steps) + +# Evaluate the Model +# Define the input function for evaluating +input_fn = tf.estimator.inputs.numpy_input_fn( + x={"images": mnist.test.images}, + y=mnist.test.labels, + batch_size=batch_size, + shuffle=False, +) +# Use the Estimator 'evaluate' method +e = model.evaluate(input_fn) + +print("Testing Accuracy:", e["accuracy"]) diff --git a/com.ibm.wala.cast.python.test/data/tf2_test_reshape3.py b/com.ibm.wala.cast.python.test/data/tf2_test_reshape3.py new file mode 100644 index 00000000..ed12f028 --- /dev/null +++ b/com.ibm.wala.cast.python.test/data/tf2_test_reshape3.py @@ -0,0 +1,13 @@ +# https://www.tensorflow.org/versions/r2.9/api_docs/python/tf/reshape + +import tensorflow as tf + + +def f(a): + pass + + +t1 = [[1, 2, 3], [4, 5, 6]] + +t2 = tf.reshape(t1, [6]) +f(t2)