-
Notifications
You must be signed in to change notification settings - Fork 4
/
mpfa.m
250 lines (199 loc) · 9.21 KB
/
mpfa.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
function out = mpfa(G,rock,activeNodes,varargin)
% Discretize Darcy's law by a multipoint flux approximation
%
% Parameters:
% G - mrst grid structure, see http://www.sintef.no/projectweb/mrst/
% To get an overview of the data format, type 'help grid_structure'
% rock - mrst rock structure. Should contain a field perm. To get an
% overview of the data format, type 'help makeRock'
% Active nodes: Which nodes should the stencil be computed for. If empty,
% all nodes in the grid is considered.
%
% NOTE: The function computes and stores in memory the inverse of a
% block-diagonal matrix
% (which expresses gradients on the sub-cells as a function of pressures
% in the surrounding cells). The size of each sub-matrix will be the
% number of sub-cells sharing the vertex * number of dimensions, so each
% system will be 8x8 for Cartesian 2D, 24x24 for Cartesian 3D. For large
% 3D grids, in particular with simplices, this may be heavy in terms of
% memory needs. For this reason, the activeNodes option may be an atractive
% option. For a work-around that splits the discretization into several
% calls to mpfa, and thus reduces memory consumption, see mpfa_subgrid.
%
% Optional parametrs, defined as keyword - value pairs:
% 'eta' - Location of continuity point on the half edges, defined
% according to Aavatsmark 2002. Between 0 and 1. Default value is 0, for
% simplices, the value should be 1/3 (will give symmetric method, see
% Klausen, Radu Eigestad 2008).
% bc - boundary conditions, as defined by the MRST function addBC. If none
% are provided, homogeneous Neumann conditions will be assigned.
% invertBlocks - method for inverting block diagonal systems. Should be
% either 'matlab' or 'mex'. The former is pure matlab, which will be
% slow for large problems. Mex is substantially faster, but requires
% that matlab has access to a mex / c compiler.
% returnHalfEdgeValues - whether the return values for stresses etc should
% be for sub edges/faces (or summed to the whole face). Default is the
% full faces. Can be used for a partial update of the discretization
% scheme.
%
%{
Copyright 2015-2016, University of Bergen.
This file is part of FVBiot.
FVBiot is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
FVBiot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this file. If not, see <http://www.gnu.org/licenses/>.
%}
opt=struct('eta', 0,...
'bc',[],...
'invertBlocks','mex', ...
'returnHalfEdgeValues',0);
if nargin < 3 || numel(activeNodes) == 0
activeNodes = 1:G.nodes.num;
end
opt=merge_options(opt,varargin{:});
opt.invertBlocks = blockInverter(opt);
% Bookkeeping
Nd = G.griddim;
Nc = G.cells.num;
% Number of nodes per face
nFaceNodes = diff(G.faces.nodePos);
% Boundary conditions
[isNeumann,isDirichlet] = classifyBoundaryFaces(G,opt.bc);
% Subcell topology; give numbers to sub-cells, sub-faces etc.
[cnoAll, nnoAll, ~, fnoAll, subfnoAll, subhfnoAll] = createSubcellMapping(G);
% If not all nodes are active, we need to differ between active and passive
% sub-faces, sub-cells etc.
localTopology = ismember(nnoAll, activeNodes);
cnoGlob = cnoAll(localTopology);
fnoGlob = fnoAll(localTopology);
subfnoGlob = subfnoAll(localTopology);
[~,~,nno] = unique(nnoAll(localTopology));
[tmpcno,~,cno] = unique(cnoAll(localTopology));
[~,~,fno] = unique(fnoAll(localTopology));
[~,~,subfno] = unique(subfnoAll(localTopology));
[~,~,subhfno] = unique(subhfnoAll(localTopology));
% Obtain permeability tensor
K = permTensor(rock,Nd);
K = K(tmpcno,:);
%% Discretization
% Contribution of gradients to flux continuity (-nK)
[nK,cellNodeBlocks,subcind] = multiplyNormalVectorAndTensor(G,K,cno,fnoGlob,nno,subhfno);
% Distance from cell centers to face continuity points
pCont = computeDistFaceCell(G,cnoGlob,fnoGlob,nno,subhfno,opt.eta);
% Darcy's law, only computed from one side of the face
[~,uniqueSubfno] = unique(subfno);
darcy = -nK(uniqueSubfno,:);
hf2f = sparse(fno(uniqueSubfno),subfno(uniqueSubfno),1);
sgn = 2*(cnoGlob == G.faces.neighbors(fnoGlob,1)) -1;
% nK and pCont was computed from both sides of a subface. Now combine them
pairOverSubfaces = sparse(subfno,subhfno,sgn);
nK = pairOverSubfaces * nK; pCont = pairOverSubfaces * pCont;
clear pairOverSubfaces
% Right hand side of the equations (corresponding to cell center
% contributions)
pContCC = sparse(subfno,cno,sgn);
nKCC = sparse(max(subfno),max(cno));
% Done with matching expression from the two sides of the faces, now reduce
% the fields to one per sub-face (e.g. from one side of the faces, but not
% the other).
nno = nno(uniqueSubfno);
subfno = subfno(uniqueSubfno);
% Also find the global index of unique faces
fnoGlob = fnoGlob(uniqueSubfno);
subfnoGlob = subfnoGlob(uniqueSubfno);
nsubfno = max(subfno);
sgn = 2*(cnoGlob(uniqueSubfno) == G.faces.neighbors(fnoGlob,1)) -1;
%% Exclude equations from boundary faces
j = find(~isNeumann(fnoGlob));
i = 1:numel(j);
excludeNeumann = sparse(i,j,1,numel(i),nsubfno);
j = find(~isDirichlet(fnoGlob));
i = 1 : numel(j);
excludeDirichlet = sparse(i,j,1,numel(i),nsubfno);
nK = excludeDirichlet * nK;
pCont = excludeNeumann * pCont;
clear i j
% Exclude boundary faces from right hand side
nKCC = excludeDirichlet * nKCC;
pContCC = excludeNeumann * pContCC;
%% Write the equations for the gradients on block diagonal form, and invert
% Map of rows to block-diag structure
% Do not consider excluded boundary equations
nnoFlux = excludeDirichlet * nno;
nnoPressure = excludeNeumann * nno;
[n,map] = sort([nnoFlux; nnoPressure]);
rows2blkDiag = sparse(1:numel(map),map,1);
clear map nnoFlux nnoPressure
% Map of columns to block-diag structure
[~,sortNode] = sort(cellNodeBlocks(:,2));
subcind = reshape(subcind(sortNode,:)',[],1);
cols2blkDiag = sparse(1:numel(subcind),subcind,1)';
% Set up block matrix for gradient contribution
grad = rows2blkDiag * [nK ; pCont ] * cols2blkDiag;
% Size of sub-systems.
sz = accumarray(n,1);
% Invert by chosen method
igrad = opt.invertBlocks(grad,sz);
clear grad n sz pCont subcind sortNode cellNodeBlocks
%% Compute basis functions for internal degrees of freedom
% Assign unit pressures in cell centers. When
% mupliplying with igrad, this will give gradients in terms of the
% pressures, that is, the basis function.
% Rearrange rows of rhs, and scale the elements
cc = rows2blkDiag * [nKCC ; pContCC];
subgrad = cols2blkDiag * igrad * (-cc); % Cell center values moved to right hand side
loc2globFace = sparse(subfnoGlob,1:numel(subfnoGlob),1,max(subfnoAll),numel(subfnoGlob));
cnoGlob = unique(cnoGlob);
loc2globCell = sparse(1:numel(cnoGlob),cnoGlob,1,numel(cnoGlob),max(cnoAll));
% The flux discretization
out.F = loc2globFace * darcy * subgrad * loc2globCell;
clear cc subgrad
%% Boundary conditions
% Similar to the cell centers, we compute sub-cell pressure gradients as a
% function of boundary conditions (Neumann or Dirichlet). This gives a form
% of basis function for the boundary conditions.
nNeu = sum(isNeumann(fnoGlob));
nDir = sum(isDirichlet(fnoGlob));
nbnd = nNeu + nDir;
% We need to operate with two sets of indices for Neumann and Dirichlet
% sub-faces: One represents their global indices, while the other gives
% their location in the local (block-diagonal) equation. The difference is
% that the latter need to take into account that the equation numbering
% is impacted by the removal of rows in the system on the boundaries (via
% the mappings excludeDirichlet and excludeNeumann)
neu_ind_eq = find(excludeDirichlet * isNeumann(fnoGlob));
neu_ind_glob = find(isNeumann(fnoGlob));
dir_ind_eq = find(excludeNeumann * isDirichlet(fnoGlob));
dir_ind_glob = find(isDirichlet(fnoGlob));
% The right hand sides should consider the equation based numbering
ccNeu = sparse(neu_ind_eq, 1:numel(neu_ind_eq), sgn(neu_ind_glob) ...
./nFaceNodes(fnoGlob(neu_ind_eq)), size(nK, 1), nNeu+nDir);
ccDir = sparse(dir_ind_eq,nNeu+(1:numel(dir_ind_eq)),(sgn(dir_ind_glob).^1), size(pContCC,1), nNeu+nDir);
% The matrix [ccNeu; ccDir] have one column for each subface on the
% boundary. Map this into one column for each face (including interior
% ones) in the grid.
% Here we need to use the global indices
subBndFace2AllFaces = sparse(1:nbnd,[neu_ind_glob; dir_ind_glob],1,nbnd,...
max(subfno)) * sparse(subfno,fnoGlob,1,max(subfno),G.faces.num);
% BoundFlux is here fluxes expressed through
out.boundFlux = loc2globFace * darcy * cols2blkDiag * igrad * ...
( rows2blkDiag * [ccNeu ; ccDir]) * subBndFace2AllFaces; ...
% Map from sub-face to face value if desired
if opt.returnHalfEdgeValues
out.hf2f = hf2f;
else
out.F = hf2f * out.F;
out.boundFlux = hf2f * out.boundFlux;
out.div = scalarDivergence(G);
out.A = out.div * out.F;
end
clear darcy igrad nK cols2blkDiag rows2blkDiag hf2f
clear subfno fno cno nno subhfno subcind scalingNK scalingPcont
clear excludeDirichlet excludeNeumann pContCC