This repository has been archived by the owner on Jan 18, 2024. It is now read-only.
forked from sumlnoether/node-multi-hashing-node8
-
Notifications
You must be signed in to change notification settings - Fork 4
/
cryptonight_soft_shell.c
298 lines (252 loc) · 9.57 KB
/
cryptonight_soft_shell.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
// Copyright (c) 2012-2013 The Cryptonote developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
// Portions Copyright (c) 2018 The Monero developers
// Portions Copyright (c) 2018 The TurtleCoin Developers
#include <stdio.h>
#include <stdlib.h>
#include "crypto/oaes_lib.h"
#include "crypto/c_keccak.h"
#include "crypto/c_groestl.h"
#include "crypto/c_blake256.h"
#include "crypto/c_jh.h"
#include "crypto/c_skein.h"
#include "crypto/int-util.h"
#include "crypto/hash-ops.h"
#include "crypto/variant2_int_sqrt.h"
#if defined(_MSC_VER)
#include <malloc.h>
#endif
// Standard Crypto Definitions
#define AES_BLOCK_SIZE 16
#define AES_KEY_SIZE 32
#define INIT_SIZE_BLK 8
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
#define VARIANT1_1(p) \
do if (variant == 1) \
{ \
const uint8_t tmp = ((const uint8_t*)(p))[11]; \
static const uint32_t table = 0x75310; \
const uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; \
((uint8_t*)(p))[11] = tmp ^ ((table >> index) & 0x30); \
} while(0)
#define VARIANT1_2(p) \
do if (variant == 1) \
{ \
((uint64_t*)p)[1] ^= tweak1_2; \
} while(0)
#define VARIANT1_INIT() \
if (variant == 1 && len < 43) \
{ \
fprintf(stderr, "Cryptonight variant 1 needs at least 43 bytes of data"); \
_exit(1); \
} \
const uint64_t tweak1_2 = (variant == 1) ? *(const uint64_t*)(((const uint8_t*)input)+35) ^ state.hs.w[24] : 0
#define U64(p) ((uint64_t*)(p))
#define VARIANT2_INIT(b, state) \
uint64_t division_result; \
uint64_t sqrt_result; \
do if (variant >= 2) \
{ \
U64(b)[2] = state.hs.w[8] ^ state.hs.w[10]; \
U64(b)[3] = state.hs.w[9] ^ state.hs.w[11]; \
division_result = state.hs.w[12]; \
sqrt_result = state.hs.w[13]; \
} while (0)
#define VARIANT2_SHUFFLE_ADD(base_ptr, offset, a, b) \
do if (variant >= 2) \
{ \
uint64_t* chunk1 = U64((base_ptr) + ((offset) ^ 0x10)); \
uint64_t* chunk2 = U64((base_ptr) + ((offset) ^ 0x20)); \
uint64_t* chunk3 = U64((base_ptr) + ((offset) ^ 0x30)); \
\
const uint64_t chunk1_old[2] = { chunk1[0], chunk1[1] }; \
\
chunk1[0] = chunk3[0] + U64(b + 16)[0]; \
chunk1[1] = chunk3[1] + U64(b + 16)[1]; \
\
chunk3[0] = chunk2[0] + U64(a)[0]; \
chunk3[1] = chunk2[1] + U64(a)[1]; \
\
chunk2[0] = chunk1_old[0] + U64(b)[0]; \
chunk2[1] = chunk1_old[1] + U64(b)[1]; \
} while (0)
#define VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr) \
((uint64_t*)(b))[0] ^= division_result ^ (sqrt_result << 32); \
{ \
const uint64_t dividend = ((uint64_t*)(ptr))[1]; \
const uint32_t divisor = (((uint32_t*)(ptr))[0] + (uint32_t)(sqrt_result << 1)) | 0x80000001UL; \
division_result = ((uint32_t)(dividend / divisor)) + \
(((uint64_t)(dividend % divisor)) << 32); \
} \
const uint64_t sqrt_input = ((uint64_t*)(ptr))[0] + division_result
#define VARIANT2_INTEGER_MATH(b, ptr) \
do if (variant >= 2) \
{ \
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
VARIANT2_INTEGER_MATH_SQRT_STEP_FP64(); \
VARIANT2_INTEGER_MATH_SQRT_FIXUP(sqrt_result); \
} while (0)
#define VARIANT2_2() \
do if (variant >= 2) { \
((uint64_t*)(long_state + ((j * AES_BLOCK_SIZE) ^ 0x10)))[0] ^= hi; \
((uint64_t*)(long_state + ((j * AES_BLOCK_SIZE) ^ 0x10)))[1] ^= lo; \
hi ^= ((uint64_t*)(long_state + ((j * AES_BLOCK_SIZE) ^ 0x20)))[0]; \
lo ^= ((uint64_t*)(long_state + ((j * AES_BLOCK_SIZE) ^ 0x20)))[1]; \
} while (0)
#pragma pack(push, 1)
union cn_slow_hash_state {
union hash_state hs;
struct {
uint8_t k[64];
uint8_t init[INIT_SIZE_BYTE];
};
};
#pragma pack(pop)
static void do_soft_shell_blake_hash(const void* input, size_t len, char* output) {
blake256_hash((uint8_t*)output, input, len);
}
void do_soft_shell_groestl_hash(const void* input, size_t len, char* output) {
groestl(input, len * 8, (uint8_t*)output);
}
static void do_soft_shell_jh_hash(const void* input, size_t len, char* output) {
int r = jh_hash(HASH_SIZE * 8, input, 8 * len, (uint8_t*)output);
assert(SUCCESS == r);
}
static void do_soft_shell_skein_hash(const void* input, size_t len, char* output) {
int r = c_skein_hash(8 * HASH_SIZE, input, 8 * len, (uint8_t*)output);
assert(SKEIN_SUCCESS == r);
}
static void (* const extra_hashes[4])(const void *, size_t, char *) = {
do_soft_shell_blake_hash, do_soft_shell_groestl_hash, do_soft_shell_jh_hash, do_soft_shell_skein_hash
};
extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey);
static inline size_t e2i(const uint8_t* a, size_t count) {
return (*((uint64_t*) a) / AES_BLOCK_SIZE) & (count - 1);
}
static void mul(const uint8_t* a, const uint8_t* b, uint8_t* res) {
((uint64_t*) res)[1] = mul128(((uint64_t*) a)[0], ((uint64_t*) b)[0], (uint64_t*) res);
}
static void sum_half_blocks(uint8_t* a, const uint8_t* b) {
uint64_t a0, a1, b0, b1;
a0 = SWAP64LE(((uint64_t*) a)[0]);
a1 = SWAP64LE(((uint64_t*) a)[1]);
b0 = SWAP64LE(((uint64_t*) b)[0]);
b1 = SWAP64LE(((uint64_t*) b)[1]);
a0 += b0;
a1 += b1;
((uint64_t*) a)[0] = SWAP64LE(a0);
((uint64_t*) a)[1] = SWAP64LE(a1);
}
static inline void copy_block(uint8_t* dst, const uint8_t* src) {
((uint64_t*) dst)[0] = ((uint64_t*) src)[0];
((uint64_t*) dst)[1] = ((uint64_t*) src)[1];
}
static void swap_blocks(uint8_t* a, uint8_t* b) {
size_t i;
uint8_t t;
for (i = 0; i < AES_BLOCK_SIZE; i++) {
t = a[i];
a[i] = b[i];
b[i] = t;
}
}
static inline void xor_blocks(uint8_t* a, const uint8_t* b) {
((uint64_t*) a)[0] ^= ((uint64_t*) b)[0];
((uint64_t*) a)[1] ^= ((uint64_t*) b)[1];
}
static inline void xor_blocks_dst(const uint8_t* a, const uint8_t* b, uint8_t* dst) {
((uint64_t*) dst)[0] = ((uint64_t*) a)[0] ^ ((uint64_t*) b)[0];
((uint64_t*) dst)[1] = ((uint64_t*) a)[1] ^ ((uint64_t*) b)[1];
}
void cryptonight_soft_shell_hash(const char* input, char* output, uint32_t len, int variant, uint32_t scratchpad, uint32_t iterations) {
union cn_slow_hash_state state;
uint8_t text[INIT_SIZE_BYTE];
uint8_t a[AES_BLOCK_SIZE];
uint8_t b[AES_BLOCK_SIZE];
uint8_t c[AES_BLOCK_SIZE];
uint8_t aes_key[AES_KEY_SIZE];
oaes_ctx* aes_ctx;
#if defined(_MSC_VER)
uint8_t *long_state = (uint8_t *)_malloca(scratchpad);
#else
uint8_t *long_state = (uint8_t *)malloc(scratchpad);
#endif
size_t CN_INIT = (scratchpad / INIT_SIZE_BYTE);
size_t ITER_DIV = (iterations / 2);
size_t CN_AES_INIT = (scratchpad / AES_BLOCK_SIZE) / 2;
hash_process(&state.hs, (const uint8_t*) input, len);
memcpy(text, state.init, INIT_SIZE_BYTE);
memcpy(aes_key, state.hs.b, AES_KEY_SIZE);
aes_ctx = (oaes_ctx*) oaes_alloc();
size_t i, j;
VARIANT1_INIT();
VARIANT2_INIT(b, state);
oaes_key_import_data(aes_ctx, aes_key, AES_KEY_SIZE);
for (i = 0; i < CN_INIT; i++) {
for (j = 0; j < INIT_SIZE_BLK; j++) {
aesb_pseudo_round(&text[AES_BLOCK_SIZE * j],
&text[AES_BLOCK_SIZE * j],
aes_ctx->key->exp_data);
}
memcpy(&long_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
}
for (i = 0; i < 16; i++) {
a[i] = state.k[i] ^ state.k[32 + i];
b[i] = state.k[16 + i] ^ state.k[48 + i];
}
for (i = 0; i < ITER_DIV; i++) {
/* Dependency chain: address -> read value ------+
* written value <-+ hard function (AES or MUL) <+
* next address <-+
*/
/* Iteration 1 */
j = e2i(a, CN_AES_INIT);
aesb_single_round(&long_state[j * AES_BLOCK_SIZE], c, a);
VARIANT2_SHUFFLE_ADD(long_state, j * AES_BLOCK_SIZE, a, b);
xor_blocks_dst(c, b, &long_state[j * AES_BLOCK_SIZE]);
VARIANT1_1((uint8_t*)&long_state[j * AES_BLOCK_SIZE]);
/* Iteration 2 */
j = e2i(c, CN_AES_INIT);
uint64_t* dst = (uint64_t*)&long_state[j * AES_BLOCK_SIZE];
uint64_t t[2];
t[0] = dst[0];
t[1] = dst[1];
VARIANT2_INTEGER_MATH(t, c);
uint64_t hi;
uint64_t lo = mul128(((uint64_t*)c)[0], t[0], &hi);
VARIANT2_2();
VARIANT2_SHUFFLE_ADD(long_state, j * AES_BLOCK_SIZE, a, b);
((uint64_t*)a)[0] += hi;
((uint64_t*)a)[1] += lo;
dst[0] = ((uint64_t*)a)[0];
dst[1] = ((uint64_t*)a)[1];
((uint64_t*)a)[0] ^= t[0];
((uint64_t*)a)[1] ^= t[1];
VARIANT1_2((uint8_t*)&long_state[j * AES_BLOCK_SIZE]);
copy_block(b + AES_BLOCK_SIZE, b);
copy_block(b, c);
}
memcpy(text, state.init, INIT_SIZE_BYTE);
oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE);
for (i = 0; i < CN_INIT; i++) {
for (j = 0; j < INIT_SIZE_BLK; j++) {
xor_blocks(&text[j * AES_BLOCK_SIZE],
&long_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
aesb_pseudo_round(&text[j * AES_BLOCK_SIZE],
&text[j * AES_BLOCK_SIZE],
aes_ctx->key->exp_data);
}
}
memcpy(state.init, text, INIT_SIZE_BYTE);
hash_permutation(&state.hs);
/*memcpy(hash, &state, 32);*/
extra_hashes[state.hs.b[0] & 3](&state, 200, output);
oaes_free((OAES_CTX **) &aes_ctx);
}
void cryptonight_soft_shell_fast_hash(const char* input, char* output, uint32_t len) {
union hash_state state;
hash_process(&state, (const uint8_t*) input, len);
memcpy(output, &state, HASH_SIZE);
}