forked from vafeiadis/hahn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHahnSegment.v
217 lines (194 loc) · 7.66 KB
/
HahnSegment.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
(******************************************************************************)
(** * Lemmas about segments of finitely-supported total orders *)
(******************************************************************************)
Require Import HahnBase HahnSets HahnList HahnRelationsBasic HahnWf HahnMinElt.
Require Import HahnEquational HahnSorted.
Set Implicit Arguments.
Lemma fsupp_immediate_pred A (R: relation A)
(FS: fsupp R) (IRR: irreflexive R) (TRANS: transitive R)
x (NMIN: ~ min_elt R x):
exists x', immediate R x' x.
Proof.
clarify_not.
apply fsupp_imm_t, ct_end in NMIN; eauto.
destruct NMIN; desf; eauto.
Qed.
Section Segments.
Variable A : Type.
Variable cond : A -> Prop.
Variable r : relation A.
Variable STO : strict_total_order cond r.
Variable FSUPP: fsupp r.
(** Every finitely-supported total order has a starting segment *)
Lemma starting_segment_exists x (Cx: cond x):
exists l, << SORTED: StronglySorted r l >> /\
<< INIT: forall x', cond x' /\ r^* x' x <-> In x' l >>.
Proof.
destruct STO as [[IRR T] TOT].
assert (WF: well_founded (restr_rel cond r)).
by eauto using wf_restr, fsupp_well_founded.
apply fsupp_restr with (cond:=cond) in FSUPP.
induction x using (well_founded_induction WF).
destruct (classic (min_elt (restr_rel cond r) x)).
* exists (x :: nil); repeat split; ins; desf; vauto.
rewrite clos_refl_transE in H2; desf; eauto.
apply clos_trans_of_transitiveD in H2; eauto; firstorder.
* forward eapply fsupp_immediate_pred as [y [M N]];
eauto using fsupp_restr, irreflexive_restr, transitive_restr.
specialize_full H; eauto; red in M; desf.
exists (l ++ x :: nil); splits; ins.
rewrite StronglySorted_app_iff, StronglySorted_cons_iff; splits; ins; desf; vauto.
apply INIT in IN1; desf.
apply ct_of_trans, ct_end; vauto.
rewrite in_app_iff, <- INIT; ins.
intuition; desf; eauto using clos_refl_trans.
tertium_non_datur (y = x') as [|NEQ]; desf; eauto using clos_refl_trans.
apply TOT in NEQ; desf; eauto using clos_refl_trans.
apply rt_of_trans in H2; ins; red in H2; desf; eauto.
destruct (N x'); vauto.
Qed.
Lemma starting_segment_exists_unique x (Cx: cond x):
exists! l, << SORTED: StronglySorted r l >> /\
<< INIT: forall x', cond x' /\ r^* x' x <-> In x' l >>.
Proof.
assert (X:=starting_segment_exists Cx); desc.
destruct STO.
exists l; split; ins; desc.
eapply StronglySorted_eq; eauto.
by ins; rewrite <- INIT, INIT0.
Qed.
Definition starting_segment x Cx :=
proj1_sig (constructive_definite_description _
(@starting_segment_exists_unique x Cx)).
Lemma starting_segment_property x (Cx: cond x) :
<< SORTED: StronglySorted r (starting_segment Cx) >> /\
<< INIT: forall x', cond x' /\ r^* x' x <-> In x' (starting_segment Cx) >>.
Proof.
unfold starting_segment; match goal with [ |- context[proj1_sig ?t] ] => destruct t end;
eauto.
Qed.
Lemma in_starting_segment_iff x (Cx: cond x) z :
In z (starting_segment Cx) <-> cond z /\ r* z x.
Proof.
symmetry; apply starting_segment_property.
Qed.
Lemma starting_segment_contains_endpoint x (Cx: cond x) :
In x (starting_segment Cx).
Proof.
apply in_starting_segment_iff; vauto.
Qed.
Lemma start_of_starting_endpoint x (Cx: cond x) :
exists l, starting_segment Cx = l ++ x :: nil.
Proof.
assert (X:=starting_segment_contains_endpoint Cx).
apply in_split in X; desf.
enough (l2 = nil) by (desf; eauto).
assert (Y:=starting_segment_property Cx); desf.
rewrite X in *; clear X.
apply StronglySorted_app_iff, proj2, proj1 in SORTED.
apply StronglySorted_cons_iff, proj2 in SORTED.
destruct l2; ins.
rewrite Forall_cons in *.
assert (r^* a x) by (apply INIT; eauto with hahn).
destruct STO as [[IRR T] TOT].
exfalso; eapply IRR, ct_of_trans, t_rt_step; desf; vauto.
Qed.
Lemma NoDup_starting_segment x (Cx: cond x) :
NoDup (starting_segment Cx).
Proof.
destruct STO as [[IRR T] TOT].
eapply NoDup_StronglySorted; eauto.
apply starting_segment_property.
Qed.
Lemma not_in_starting_segment x (Cx: cond x) y (Cy: cond y):
~ In y (starting_segment Cx) -> r x y.
Proof.
ins; apply NNPP; intro.
destruct H; apply starting_segment_property.
split; ins.
destruct STO as [[IRR T] TOT].
specialize (TOT _ Cx _ Cy).
apply imply_to_or in TOT; desf; clarify_not; vauto.
Qed.
(* NB: Cy is not necessary, but it is easier to use the lemma with it. *)
Lemma start_of_starting_segment x (Cx : cond x) y (Cy : cond y) l l':
starting_segment Cx = l ++ y :: l'
-> starting_segment Cy = l ++ y :: nil.
Proof.
assert (T := STO); do 2 (red in T; desc).
ins; eapply StronglySorted_eq; vauto.
* by apply starting_segment_property.
* eapply StronglySorted_app_l.
rewrite <- app_assoc; ins.
rewrite <- H.
by apply starting_segment_property.
* split; ins.
+ apply starting_segment_property in H0; desc.
specialize (starting_segment_property Cx); ins; desf; rewrite H in *.
forward apply (proj1 (INIT x0)) as X.
{ split; ins.
eapply rt_trans; eauto.
eapply starting_segment_property.
rewrite H; eauto with hahn. }
rewrite in_app_iff in X; ins; desf; eauto with hahn.
exfalso.
apply StronglySorted_app_r, StronglySorted_inv in SORTED; desf.
rewrite Forall_forall in SORTED0.
apply SORTED0 in X.
rewrite clos_refl_transE in H1; desf.
eby eapply T.
apply (ct_of_trans T1) in H1.
eby eapply T, T1.
+ apply starting_segment_property.
specialize (starting_segment_property Cx); ins; desf; rewrite H in *.
forward apply (proj2 (INIT x0)) as X.
by rewrite in_app_iff in H0; ins; desf; eauto with hahn.
split; desf.
clear - H0 SORTED.
rewrite in_app_iff in *; ins; desf; vauto.
apply StronglySorted_app_iff in SORTED; desf.
apply rt_step; eauto with hahn.
Qed.
Definition segment x (Cx : cond x) y (Cy : cond y) :=
filterP (fun e => ~ In e (starting_segment Cx)) (starting_segment Cy).
Lemma segment_property x (Cx: cond x) y (Cy: cond y):
⟪SORTED: StronglySorted r (segment Cx Cy)⟫ /\
⟪SEGMENT: forall z, cond z /\ r x z /\ r* z y <-> In z (segment Cx Cy)⟫.
Proof.
ins; splits.
by apply StronglySorted_filterP, starting_segment_property.
split; ins; desf.
* apply in_filterP_iff; split.
by apply starting_segment_property.
intro N; apply starting_segment_property in N; desf.
destruct STO as [[IRR T] TOT].
apply clos_refl_transE in N0; desf; eauto.
apply clos_trans_of_transitiveD in N0; eauto.
* unfold segment in H; apply in_filterP_iff in H; desf.
apply starting_segment_property in H; desf; splits; try done.
eby eapply not_in_starting_segment.
Qed.
Lemma in_segment_iff x (Cx: cond x) y (Cy: cond y) z :
In z (segment Cx Cy) <-> cond z /\ r x z /\ r^* z y.
Proof.
symmetry; apply segment_property.
Qed.
Lemma starting_segment_decomp x (Cx: cond x) y (Cy: cond y) (Rxy: r^* x y):
starting_segment Cy = starting_segment Cx ++ segment Cx Cy.
Proof.
destruct STO as [[IRR T] TOT].
eapply StronglySorted_eq; eauto.
* by red; eauto.
* by apply starting_segment_property.
* apply StronglySorted_app; ins.
by apply starting_segment_property.
by apply segment_property.
apply starting_segment_property in IN1; apply segment_property in IN2; desf.
rewrite clos_refl_transE in *; desf; eauto.
all: repeat match goal with H : _⁺ _ _ |- _ => apply (ct_of_trans T) in H end; eauto.
* ins; rewrite in_app_iff, !in_starting_segment_iff, in_segment_iff.
intuition; eauto using clos_refl_trans.
tertium_non_datur (x0 = x) as [->|NEQ]; eauto using clos_refl_trans.
eapply TOT in NEQ; desf; eauto using clos_refl_trans.
Qed.
End Segments.