Skip to content

Latest commit

 

History

History
65 lines (44 loc) · 1.65 KB

README.md

File metadata and controls

65 lines (44 loc) · 1.65 KB

AutoML lecture 2022 (Albert Ludwigs University of Freiburg)

DEHB-WS: Joint Architecture and Hyperparameter Search with Weight Sharing

Zahra Padar, Sharat Patil, Sai Prasanna

Python version: 3.8

Install requirements:

pip install -r requirements.txt

Run DEHB-WS pipeline

Warmstart Supernet:

python3 warm_train_supernet.py

Run DEHB-WS:

python3 run_hpo_nas.py --configs defaults dehbws --seed 13

Logs and trained model are stored at: results/dehbws_results/{seed}

Finetune and evaluate incumbent:

python3 finetune.py

Tuned models are saved at: results/dehbws_results/{seed}

Run DEHB or SMAC4MF

python3 run_hpo_nas.py --configs defaults {dehb/smac} --seed 13

Files

  • configs.yaml : Default run configurations. Can be overridden by passing args

  • configspace.py : JAHS-bench-201 config space

  • dehbws.py : DEHB-WS implementation.

  • finetune.py : Script to finetune and evaluate DEHB-WS incumbent

  • run_hpo_nas.py : Main script to perform Joint Architecture and Hyperparameter Search

  • supernet.py : Global supernet creation and update function

  • train.py : Script to train and score subnets

  • utils.py : Utility functions

  • warm_train_supernet.py : Script to warm start the supernet

  • datasets/ : 8, 16 , 32 resolution Fashion-MNIST with fixed train-validation splits

  • model/ : Code for Supernet

    • dynamic_model.py : JAHS-201 Supernet
    • dynamic_ops.py : Dynamic Layers
    • dynamic_primitives.py : Dynamic Architecture Blocks (Resnet, Cell)
  • results/ : Directory to log and store runs

  • utility_scripts: Scripts to simulate Hyper band runs