Python version: 3.8
pip install -r requirements.txt
python3 warm_train_supernet.py
python3 run_hpo_nas.py --configs defaults dehbws --seed 13
Logs and trained model are stored at: results/dehbws_results/{seed}
python3 finetune.py
Tuned models are saved at: results/dehbws_results/{seed}
python3 run_hpo_nas.py --configs defaults {dehb/smac} --seed 13
-
configs.yaml : Default run configurations. Can be overridden by passing args
-
configspace.py : JAHS-bench-201 config space
-
dehbws.py : DEHB-WS implementation.
-
finetune.py : Script to finetune and evaluate DEHB-WS incumbent
-
run_hpo_nas.py : Main script to perform Joint Architecture and Hyperparameter Search
-
supernet.py : Global supernet creation and update function
-
train.py : Script to train and score subnets
-
utils.py : Utility functions
-
warm_train_supernet.py : Script to warm start the supernet
-
datasets/ : 8, 16 , 32 resolution Fashion-MNIST with fixed train-validation splits
-
model/ : Code for Supernet
- dynamic_model.py : JAHS-201 Supernet
- dynamic_ops.py : Dynamic Layers
- dynamic_primitives.py : Dynamic Architecture Blocks (Resnet, Cell)
-
results/ : Directory to log and store runs
-
utility_scripts: Scripts to simulate Hyper band runs