-
Notifications
You must be signed in to change notification settings - Fork 252
/
train_i3d.py
133 lines (102 loc) · 4.92 KB
/
train_i3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
#os.environ["CUDA_VISIBLE_DEVICES"]='0,1,2,3'
import sys
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-mode', type=str, help='rgb or flow')
parser.add_argument('-save_model', type=str)
parser.add_argument('-root', type=str)
args = parser.parse_args()
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import torchvision
from torchvision import datasets, transforms
import videotransforms
import numpy as np
from pytorch_i3d import InceptionI3d
from charades_dataset import Charades as Dataset
def run(init_lr=0.1, max_steps=64e3, mode='rgb', root='/ssd/Charades_v1_rgb', train_split='charades/charades.json', batch_size=8*5, save_model=''):
# setup dataset
train_transforms = transforms.Compose([videotransforms.RandomCrop(224),
videotransforms.RandomHorizontalFlip(),
])
test_transforms = transforms.Compose([videotransforms.CenterCrop(224)])
dataset = Dataset(train_split, 'training', root, mode, train_transforms)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=36, pin_memory=True)
val_dataset = Dataset(train_split, 'testing', root, mode, test_transforms)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=36, pin_memory=True)
dataloaders = {'train': dataloader, 'val': val_dataloader}
datasets = {'train': dataset, 'val': val_dataset}
# setup the model
if mode == 'flow':
i3d = InceptionI3d(400, in_channels=2)
i3d.load_state_dict(torch.load('models/flow_imagenet.pt'))
else:
i3d = InceptionI3d(400, in_channels=3)
i3d.load_state_dict(torch.load('models/rgb_imagenet.pt'))
i3d.replace_logits(157)
#i3d.load_state_dict(torch.load('/ssd/models/000920.pt'))
i3d.cuda()
i3d = nn.DataParallel(i3d)
lr = init_lr
optimizer = optim.SGD(i3d.parameters(), lr=lr, momentum=0.9, weight_decay=0.0000001)
lr_sched = optim.lr_scheduler.MultiStepLR(optimizer, [300, 1000])
num_steps_per_update = 4 # accum gradient
steps = 0
# train it
while steps < max_steps:#for epoch in range(num_epochs):
print 'Step {}/{}'.format(steps, max_steps)
print '-' * 10
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
i3d.train(True)
else:
i3d.train(False) # Set model to evaluate mode
tot_loss = 0.0
tot_loc_loss = 0.0
tot_cls_loss = 0.0
num_iter = 0
optimizer.zero_grad()
# Iterate over data.
for data in dataloaders[phase]:
num_iter += 1
# get the inputs
inputs, labels = data
# wrap them in Variable
inputs = Variable(inputs.cuda())
t = inputs.size(2)
labels = Variable(labels.cuda())
per_frame_logits = i3d(inputs)
# upsample to input size
per_frame_logits = F.upsample(per_frame_logits, t, mode='linear')
# compute localization loss
loc_loss = F.binary_cross_entropy_with_logits(per_frame_logits, labels)
tot_loc_loss += loc_loss.data[0]
# compute classification loss (with max-pooling along time B x C x T)
cls_loss = F.binary_cross_entropy_with_logits(torch.max(per_frame_logits, dim=2)[0], torch.max(labels, dim=2)[0])
tot_cls_loss += cls_loss.data[0]
loss = (0.5*loc_loss + 0.5*cls_loss)/num_steps_per_update
tot_loss += loss.data[0]
loss.backward()
if num_iter == num_steps_per_update and phase == 'train':
steps += 1
num_iter = 0
optimizer.step()
optimizer.zero_grad()
lr_sched.step()
if steps % 10 == 0:
print '{} Loc Loss: {:.4f} Cls Loss: {:.4f} Tot Loss: {:.4f}'.format(phase, tot_loc_loss/(10*num_steps_per_update), tot_cls_loss/(10*num_steps_per_update), tot_loss/10)
# save model
torch.save(i3d.module.state_dict(), save_model+str(steps).zfill(6)+'.pt')
tot_loss = tot_loc_loss = tot_cls_loss = 0.
if phase == 'val':
print '{} Loc Loss: {:.4f} Cls Loss: {:.4f} Tot Loss: {:.4f}'.format(phase, tot_loc_loss/num_iter, tot_cls_loss/num_iter, (tot_loss*num_steps_per_update)/num_iter)
if __name__ == '__main__':
# need to add argparse
run(mode=args.mode, root=args.root, save_model=args.save_model)