forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert.py
executable file
·1295 lines (1042 loc) · 50.7 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
from __future__ import annotations
import argparse
import concurrent.futures
import enum
import faulthandler
import functools
import itertools
import json
import math
import mmap
import os
import pickle
import re
import signal
import struct
import sys
import time
import zipfile
from abc import ABCMeta, abstractmethod
from collections import OrderedDict
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from dataclasses import dataclass
from pathlib import Path
from typing import IO, TYPE_CHECKING, Any, Callable, Iterable, Literal, Optional, TypeVar, cast
import numpy as np
from sentencepiece import SentencePieceProcessor
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
if TYPE_CHECKING:
from typing import TypeAlias
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
faulthandler.register(signal.SIGUSR1)
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
ARCH = gguf.MODEL_ARCH.LLAMA
DEFAULT_CONCURRENCY = 8
#
# data types
#
@dataclass(frozen=True)
class DataType:
name: str
dtype: np.dtype[Any]
valid_conversions: list[str]
def elements_to_bytes(self, n_elements: int) -> int:
return n_elements * self.dtype.itemsize
@dataclass(frozen=True)
class UnquantizedDataType(DataType):
pass
DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
@dataclass(frozen=True)
class QuantizedDataType(DataType):
block_size: int
quantized_dtype: np.dtype[Any]
ggml_type: gguf.GGMLQuantizationType
def quantize(self, arr: NDArray) -> NDArray:
raise NotImplementedError(f'Quantization for {self.name} not implemented')
def elements_to_bytes(self, n_elements: int) -> int:
assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
return self.quantized_dtype.itemsize * (n_elements // self.block_size)
@dataclass(frozen=True)
class Q8_0QuantizedDataType(QuantizedDataType):
# Mini Q8_0 quantization in Python!
def quantize(self, arr: NDArray) -> NDArray:
assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}'
assert arr.dtype == np.float32, f'Bad array type {arr.dtype}'
n_blocks = arr.size // self.block_size
blocks = arr.reshape((n_blocks, self.block_size))
# Much faster implementation of block quantization contributed by @Cebtenzzre
def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
d = abs(blocks).max(axis = 1) / np.float32(127)
with np.errstate(divide = 'ignore'):
qs = (blocks / d[:, None]).round()
qs[d == 0] = 0
yield from zip(d, qs)
return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)
DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
dtype = np.dtype(np.float32), valid_conversions = [],
ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
# Quantized types skipped here because they may also map to np.float32
NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {}
for dt in (DT_BF16, DT_F16, DT_F32, DT_I32):
if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE:
raise ValueError(f'Invalid duplicate data type {dt}')
NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt
SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
'BF16': DT_BF16,
'F16': DT_F16,
'F32': DT_F32,
'I32': DT_I32,
}
# TODO: match this with `llama_ftype`
# TODO: rename to LLAMAFileType
# TODO: move to `gguf.py`
class GGMLFileType(enum.IntEnum):
AllF32 = 0
MostlyF16 = 1 # except 1d tensors
MostlyQ8_0 = 7 # except 1d tensors
def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType:
dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self)
if dt is None:
raise ValueError(self)
# 1D tensors are always F32.
return dt if len(tensor.shape) > 1 else DT_F32
GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
GGMLFileType.AllF32 : DT_F32,
GGMLFileType.MostlyF16 : DT_F16,
GGMLFileType.MostlyQ8_0: DT_Q8_0,
}
#
# hparams loading
#
@dataclass
class Params:
n_vocab: int
n_embd: int
n_layer: int
n_ctx: int
n_ff: int
n_head: int
n_head_kv: int
n_experts: int | None = None
n_experts_used: int | None = None
f_norm_eps: float | None = None
rope_scaling_type: gguf.RopeScalingType | None = None
f_rope_freq_base: float | None = None
f_rope_scale: float | None = None
n_orig_ctx: int | None = None
rope_finetuned: bool | None = None
ftype: GGMLFileType | None = None
# path to the directory containing the model files
path_model: Path | None = None
@staticmethod
def guessed(model: LazyModel) -> Params:
# try transformer naming first
n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
# try transformer naming first
if "model.layers.0.self_attn.q_proj.weight" in model:
n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
else:
n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
if n_layer < 1:
raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n"
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
n_head = n_embd // 128 # guessed
n_mult = 256 # guessed
# TODO: verify this
n_ff = int(2 * (4 * n_embd) / 3)
n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult)
return Params(
n_vocab = n_vocab,
n_embd = n_embd,
n_layer = n_layer,
n_ctx = -1,
n_ff = n_ff,
n_head = n_head,
n_head_kv = n_head,
f_norm_eps = 1e-5,
)
@staticmethod
def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
config = json.load(open(config_path))
rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None
rope_scaling = config.get("rope_scaling")
if rope_scaling is not None and (typ := rope_scaling.get("type")):
rope_factor = rope_scaling.get("factor")
f_rope_scale = rope_factor
if typ == "linear":
rope_scaling_type = gguf.RopeScalingType.LINEAR
elif typ == "yarn":
rope_scaling_type = gguf.RopeScalingType.YARN
n_orig_ctx = rope_scaling['original_max_position_embeddings']
rope_finetuned = rope_scaling['finetuned']
else:
raise NotImplementedError(f'Unknown rope scaling type: {typ}')
if "max_sequence_length" in config:
n_ctx = config["max_sequence_length"]
elif "max_position_embeddings" in config:
n_ctx = config["max_position_embeddings"]
else:
raise Exception("failed to guess 'n_ctx'. This model is unknown or unsupported.\n"
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
n_experts = None
n_experts_used = None
if "num_local_experts" in config:
n_experts = config["num_local_experts"]
n_experts_used = config["num_experts_per_tok"]
return Params(
n_vocab = config["vocab_size"],
n_embd = config["hidden_size"],
n_layer = config["num_hidden_layers"],
n_ctx = n_ctx,
n_ff = config["intermediate_size"],
n_head = (n_head := config["num_attention_heads"]),
n_head_kv = config.get("num_key_value_heads", n_head),
n_experts = n_experts,
n_experts_used = n_experts_used,
f_norm_eps = config["rms_norm_eps"],
f_rope_freq_base = config.get("rope_theta"),
rope_scaling_type = rope_scaling_type,
f_rope_scale = f_rope_scale,
n_orig_ctx = n_orig_ctx,
rope_finetuned = rope_finetuned,
)
# LLaMA v2 70B params.json
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
@staticmethod
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
config = json.load(open(config_path))
n_experts = None
n_experts_used = None
f_rope_freq_base = None
# hack to determine LLaMA v1 vs v2 vs CodeLlama
if config.get("moe"):
# Mixtral
n_ctx = 32768
elif config.get("rope_theta") == 1000000:
# CodeLlama
n_ctx = 16384
elif config["norm_eps"] == 1e-05:
# LLaMA v2
n_ctx = 4096
else:
# LLaMA v1
n_ctx = 2048
if "layers.0.feed_forward.w1.weight" in model:
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
if config.get("moe"):
n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0]
n_experts = config["moe"]["num_experts"]
n_experts_used = config["moe"]["num_experts_per_tok"]
f_rope_freq_base = 1e6
return Params(
n_vocab = model["tok_embeddings.weight"].shape[0],
n_embd = config["dim"],
n_layer = config["n_layers"],
n_ctx = n_ctx,
n_ff = n_ff,
n_head = (n_head := config["n_heads"]),
n_head_kv = config.get("n_kv_heads", n_head),
n_experts = n_experts,
n_experts_used = n_experts_used,
f_norm_eps = config["norm_eps"],
f_rope_freq_base = config.get("rope_theta", f_rope_freq_base),
)
@staticmethod
def load(model_plus: ModelPlus) -> Params:
hf_config_path = model_plus.paths[0].parent / "config.json"
orig_config_path = model_plus.paths[0].parent / "params.json"
if hf_config_path.exists():
params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
elif orig_config_path.exists():
params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
elif model_plus.format != 'none':
params = Params.guessed(model_plus.model)
else:
raise ValueError('Cannot guess params when model format is none')
params.path_model = model_plus.paths[0].parent
return params
class VocabLoader:
def __init__(self, params: Params, fname_tokenizer: Path) -> None:
try:
from transformers import AutoTokenizer
except ImportError as e:
raise ImportError(
"To use VocabLoader, please install the `transformers` package. "
"You can install it with `pip install transformers`."
) from e
try:
self.tokenizer = AutoTokenizer.from_pretrained(str(fname_tokenizer), trust_remote_code=True)
except ValueError:
self.tokenizer = AutoTokenizer.from_pretrained(str(fname_tokenizer), use_fast=False, trust_remote_code=True)
self.added_tokens_dict: OrderedDict[str, int] = OrderedDict()
for tok, tokidx in sorted(self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]):
if tokidx >= params.n_vocab or tokidx < self.tokenizer.vocab_size:
continue
self.added_tokens_dict[tok] = tokidx
self.unk_token_id: int = self.tokenizer.unk_token_id
self.specials: dict[str, int] = {
tok: self.tokenizer.get_vocab()[tok]
for tok in self.tokenizer.all_special_tokens
}
self.special_ids: set[int] = set(self.tokenizer.all_special_ids)
self.reverse_vocab = {id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()}
self.vocab_size_base: int = self.tokenizer.vocab_size
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_dict)
self.fname_tokenizer: Path = fname_tokenizer
vocab_file = "tokenizer.model"
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
if path_candidate is not None:
self.spm = SentencePieceProcessor(str(path_candidate))
print(self.spm.vocab_size(), self.vocab_size_base)
else:
self.spm = None
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
added_tokens_ids = set(self.added_tokens_dict.values())
for i in range(self.vocab_size_base):
if i in added_tokens_ids:
continue
text = self.reverse_vocab[i].encode("utf-8")
yield text, self.get_token_score(i), self.get_token_type(i)
def get_token_type(self, token_id: int) -> gguf.TokenType:
toktype = gguf.TokenType.NORMAL
if self.spm is not None and token_id < self.spm.vocab_size():
if self.spm.is_unknown(token_id):
toktype = gguf.TokenType.UNKNOWN
if self.spm.is_control(token_id):
toktype = gguf.TokenType.CONTROL
if self.spm.is_unused(token_id):
toktype = gguf.TokenType.UNUSED
if self.spm.is_byte(token_id):
toktype = gguf.TokenType.BYTE
else:
token = self.reverse_vocab[token_id]
if token_id == self.unk_token_id:
toktype = gguf.TokenType.UNKNOWN
elif token_id in self.special_ids:
toktype = gguf.TokenType.CONTROL
elif len(token) == 6 and token.startswith("<0x") and token.endswith(">"):
toktype = gguf.TokenType.BYTE
return toktype
def get_token_score(self, token_id: int) -> float:
if self.spm is not None and token_id < self.spm.vocab_size():
return cast(float, self.spm.get_score(token_id))
return 0.0
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
for text in self.added_tokens_dict:
if text in self.specials:
toktype = self.get_token_type(self.specials[text])
score = self.get_token_score(self.specials[text])
else:
toktype = gguf.TokenType.USER_DEFINED
score = -1000.0
yield text.encode("utf-8"), score, toktype
def has_newline_token(self) -> bool:
return '<0x0A>' in self.tokenizer.vocab or '\n' in self.tokenizer.vocab
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
yield from self.hf_tokens()
yield from self.added_tokens()
def get_vocab_type(self) -> str:
path_candidates = []
vocab_file = "tokenizer.model"
path_candidates.append(vocab_file)
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
if path_candidate is not None:
return "llama"
vocab_file = "vocab.json"
path_candidates.append(vocab_file)
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
if path_candidate is not None:
return "gpt2"
vocab_file = "tokenizer.json"
path_candidates.append(vocab_file)
path_candidate = find_vocab_file_path(self.fname_tokenizer, vocab_file)
if path_candidate:
if not self.has_newline_token():
return "gpt2"
return "llama"
raise FileNotFoundError(
f"Could not find {path_candidates} in {self.fname_tokenizer} or its parent; "
"if it's in another directory, pass the directory as --vocab-dir"
)
def __repr__(self) -> str:
return f"<VocabLoader with {self.vocab_size_base} base tokens and {len(self.added_tokens_dict)} added tokens>"
Vocab: TypeAlias = 'VocabLoader'
#
# data loading
# TODO: reuse (probably move to gguf.py?)
#
def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
# print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
class Tensor(metaclass=ABCMeta):
data_type: DataType
@abstractmethod
def astype(self, data_type: DataType) -> Tensor: ...
@abstractmethod
def permute(self, n_head: int, n_head_kv: int) -> Tensor: ...
@abstractmethod
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor: ...
@abstractmethod
def part(self, n_part: int) -> UnquantizedTensor: ...
@abstractmethod
def to_ggml(self) -> GGMLCompatibleTensor: ...
def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray:
assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
fp32_arr = bf16_arr.astype(np.uint32) << 16
return fp32_arr.view(np.float32)
class UnquantizedTensor(Tensor):
def __init__(self, ndarray: NDArray) -> None:
assert isinstance(ndarray, np.ndarray)
self.ndarray = ndarray
self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
def astype(self, data_type: DataType) -> Tensor:
dtype = data_type.dtype
if self.data_type == DT_BF16:
self.ndarray = bf16_to_fp32(self.ndarray)
return UnquantizedTensor(self.ndarray.astype(dtype))
def to_ggml(self) -> UnquantizedTensor:
return self
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor:
r = self.ndarray.shape[0] // 3
return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
def part(self, n_part: int) -> UnquantizedTensor:
r = self.ndarray.shape[0] // 3
return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor:
return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv))
def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray:
tensor = lazy_tensor.load()
assert isinstance(tensor, UnquantizedTensor)
# double-check:
actual_shape = list(tensor.ndarray.shape)
assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
if convert:
tensor.ndarray = tensor.ndarray.astype(expected_dtype)
else:
raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')
return tensor.ndarray
GGMLCompatibleTensor = UnquantizedTensor
@dataclass
class LazyTensor:
_load: Callable[[], Tensor]
shape: list[int]
data_type: DataType
description: str
def load(self) -> Tensor:
ret = self._load()
# Should be okay if it maps to the same numpy type?
assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \
(self.data_type, ret.data_type, self.description)
return ret
def astype(self, data_type: DataType) -> LazyTensor:
self.validate_conversion_to(data_type)
def load() -> Tensor:
return self.load().astype(data_type)
return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
def validate_conversion_to(self, data_type: DataType) -> None:
if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions:
raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.')
LazyModel: TypeAlias = 'dict[str, LazyTensor]'
@dataclass
class ModelPlus:
model: LazyModel
paths: list[Path] # Where this was read from.
format: Literal['ggml', 'torch', 'safetensors', 'none']
vocab: Vocab | None # For GGML models (which have vocab built in), the vocab.
def merge_sharded(models: list[LazyModel]) -> LazyModel:
# Original LLaMA models have each file contain one part of each tensor.
# Use a dict instead of a set to preserve order.
names = {name: None for model in models for name in model}
def convert(name: str) -> LazyTensor:
lazy_tensors: list[LazyTensor] = [model[name] for model in models]
if len(lazy_tensors) == 1:
# only one file; don't go through this procedure since there might
# be quantized tensors
return lazy_tensors[0]
if len(lazy_tensors[0].shape) == 1:
# the tensor is just duplicated in every file
return lazy_tensors[0]
if name.startswith('tok_embeddings.') or \
name.endswith('.attention.wo.weight') or \
name.endswith('.feed_forward.w2.weight'):
# split by columns
axis = 1
else:
# split by rows
axis = 0
concatenated_shape = list(lazy_tensors[0].shape)
concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
def load() -> UnquantizedTensor:
ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
concatenated: NDArray = np.concatenate(ndarrays, axis=axis)
return UnquantizedTensor(concatenated)
description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
return {name: convert(name) for name in names}
def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
formats = set(mp.format for mp in models_plus)
assert len(formats) == 1, "different formats?"
format = formats.pop()
paths = [path for mp in models_plus for path in mp.paths]
# Use the first non-None vocab, if any.
try:
vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
except StopIteration:
vocab = None
if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
# Transformers models put different tensors in different files, but
# don't split individual tensors between files.
model: LazyModel = {}
for mp in models_plus:
model.update(mp.model)
else:
model = merge_sharded([mp.model for mp in models_plus])
return ModelPlus(model, paths, format, vocab)
def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
def load() -> Tensor:
return lazy_tensor.load().permute(n_head, n_head_kv)
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
def load() -> Tensor:
return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
s = lazy_tensor.shape.copy()
s[0] = s[0] // 3
return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
def load() -> Tensor:
return lazy_tensor.load().part(n_part)
s = lazy_tensor.shape.copy()
s[0] = s[0] // 3
return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
# Functionality that simulates `torch.load` but where individual tensors are
# only loaded into memory on demand, not all at once.
# PyTorch can't do this natively as of time of writing:
# - https://github.com/pytorch/pytorch/issues/64327
# This allows us to de-shard without multiplying RAM usage, and also
# conveniently drops the PyTorch dependency (though we still need numpy).
@dataclass
class LazyStorageKind:
data_type: DataType
@dataclass
class LazyStorage:
load: Callable[[int, int], NDArray]
kind: LazyStorageKind
description: str
class LazyUnpickler(pickle.Unpickler):
def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
super().__init__(fp)
self.data_base_path = data_base_path
self.zip_file = zip_file
def persistent_load(self, pid: Any) -> Any:
assert pid[0] == 'storage'
assert isinstance(pid[1], LazyStorageKind)
data_type = pid[1].data_type
filename_stem = pid[2]
filename = f'{self.data_base_path}/{filename_stem}'
info = self.zip_file.getinfo(filename)
def load(offset: int, elm_count: int) -> NDArray:
dtype = data_type.dtype
fp = self.zip_file.open(info)
fp.seek(offset * dtype.itemsize)
size = elm_count * dtype.itemsize
data = fp.read(size)
assert len(data) == size
return np.frombuffer(data, dtype)
description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
return LazyStorage(load=load, kind=pid[1], description=description)
@staticmethod
def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
assert isinstance(storage, LazyStorage)
def load() -> UnquantizedTensor:
elm_count = stride[0] * size[0]
return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
description = f'pickled storage_offset={storage_offset} in {storage.description}'
return LazyTensor(load, list(size), storage.kind.data_type, description)
@staticmethod
def rebuild_from_type_v2(func, new_type, args, state):
return func(*args)
CLASSES: dict[tuple[str, str], Any] = {
# getattr used here as a workaround for mypy not being smart enough to determine
# the staticmethods have a __func__ attribute.
('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
('torch', 'IntStorage'): LazyStorageKind(DT_I32),
('torch', 'Tensor'): LazyTensor,
}
def find_class(self, module: str, name: str) -> Any:
if not module.startswith('torch'):
return super().find_class(module, name)
return self.CLASSES[(module, name)]
def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
zf = zipfile.ZipFile(outer_fp)
pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
assert len(pickle_paths) == 1, pickle_paths
pickle_fp = zf.open(pickle_paths[0], 'r')
unpickler = LazyUnpickler(pickle_fp,
data_base_path=pickle_paths[0][:-4],
zip_file=zf)
model = unpickler.load()
if 'model' in model: model = model['model']
as_dict = dict(model.items())
return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
header_size, = struct.unpack('<Q', fp.read(8))
header: dict[str, dict[str, Any]] = json.loads(fp.read(header_size))
# Use mmap for the actual data to avoid race conditions with the file offset.
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
byte_buf = mapped[8 + header_size:]
def convert(info: dict[str, Any]) -> LazyTensor:
data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
numpy_dtype = data_type.dtype
shape: list[int] = info['shape']
begin, end = info['data_offsets']
assert 0 <= begin <= end <= len(byte_buf)
assert end - begin == math.prod(shape) * numpy_dtype.itemsize
buf = byte_buf[begin:end]
def load() -> UnquantizedTensor:
return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
return LazyTensor(load, shape, data_type, description)
model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'}
return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
def must_read(fp: IO[bytes], length: int) -> bytes:
ret = fp.read(length)
if len(ret) < length:
raise Exception("unexpectedly reached end of file")
return ret
@functools.lru_cache(maxsize=None)
def lazy_load_file(path: Path) -> ModelPlus:
fp = open(path, 'rb')
first8 = fp.read(8)
fp.seek(0)
if first8[:2] == b'PK':
# A zip file, i.e. PyTorch format
return lazy_load_torch_file(fp, path)
elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
# Probably safetensors
return lazy_load_safetensors_file(fp, path)
else:
raise ValueError(f"unknown format: {path}")
In = TypeVar('In')
Out = TypeVar('Out')
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
'''Parallel map, but with backpressure. If the caller doesn't call `next`
fast enough, this will stop calling `func` at some point rather than
letting results pile up in memory. Specifically, there is a max of one
output value buffered per thread.'''
if concurrency < 2:
yield from map(func, iterable)
# Not reached.
iterable = iter(iterable)
executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor]
if use_processpool_executor:
executor_class = ProcessPoolExecutor
else:
executor_class = ThreadPoolExecutor
with executor_class(max_workers = max_workers) as executor:
futures: list[concurrent.futures.Future[Out]] = []
done = False
for _ in range(concurrency):
try:
futures.append(executor.submit(func, next(iterable)))
except StopIteration:
done = True
break
while futures:
result = futures.pop(0).result()
while not done and len(futures) < concurrency:
try:
futures.append(executor.submit(func, next(iterable)))
except StopIteration:
done = True
break
yield result
def check_vocab_size(params: Params, vocab: Vocab, pad_vocab: bool = False) -> None:
if params.n_vocab != vocab.vocab_size:
if params.n_vocab == vocab.vocab_size:
print("Ignoring added_tokens.json since model matches vocab size without it.")
vocab.added_tokens_dict = OrderedDict()
vocab.vocab_size = vocab.vocab_size
return
if pad_vocab and params.n_vocab > vocab.vocab_size:
pad_count = params.n_vocab - vocab.vocab_size
print(f'Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>')
for i in range(1, (params.n_vocab - vocab.vocab_size) + 1):
vocab.added_tokens_dict[f'<dummy{i:05}>'] = -1
vocab.vocab_size = params.n_vocab
return
msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}"
msg += f" has {vocab.vocab_size})."
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20:
msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
if vocab.vocab_size < params.n_vocab:
msg += " Possibly try using the --padvocab option."
raise Exception(msg)
class OutputFile:
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
def add_meta_arch(self, params: Params) -> None:
name = "LLaMA"
# TODO: better logic to determine model name
if params.n_ctx == 4096:
name = "LLaMA v2"
elif params.path_model is not None:
name = str(params.path_model.parent).split('/')[-1]
self.gguf.add_name (name)
self.gguf.add_context_length (params.n_ctx)
self.gguf.add_embedding_length (params.n_embd)
self.gguf.add_block_count (params.n_layer)
self.gguf.add_feed_forward_length (params.n_ff)
self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
self.gguf.add_head_count (params.n_head)
self.gguf.add_head_count_kv (params.n_head_kv)
if params.n_experts:
self.gguf.add_expert_count(params.n_experts)
if params.n_experts_used:
self.gguf.add_expert_used_count(params.n_experts_used)
if params.f_norm_eps:
self.gguf.add_layer_norm_rms_eps(params.f_norm_eps)
else:
raise ValueError('f_norm_eps is None')
if params.f_rope_freq_base is not None:
self.gguf.add_rope_freq_base(params.f_rope_freq_base)
if params.rope_scaling_type:
assert params.f_rope_scale is not None
self.gguf.add_rope_scaling_type(params.rope_scaling_type)
self.gguf.add_rope_scaling_factor(params.f_rope_scale)
if params.n_orig_ctx is not None:
self.gguf.add_rope_scaling_orig_ctx_len(params.n_orig_ctx)
if params.rope_finetuned is not None:
self.gguf.add_rope_scaling_finetuned(params.rope_finetuned)
if params.ftype is not None:
self.gguf.add_file_type(params.ftype)
def add_meta_vocab(self, vocab: Vocab) -> None:
tokens = []
scores = []
toktypes = []
# NOTE: `all_tokens` returns the base vocabulary and added tokens
for text, score, toktype in vocab.all_tokens():
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
vocab_type = vocab.get_vocab_type()
self.gguf.add_tokenizer_model(vocab_type)
self.gguf.add_token_list(tokens)
self.gguf.add_token_scores(scores)
self.gguf.add_token_types(toktypes)
def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None:
svocab.add_to_gguf(self.gguf)
def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
n_elements = int(np.prod(tensor.shape))
raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype
data_nbytes = tensor.data_type.elements_to_bytes(n_elements)
self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype = raw_dtype)
def write_meta(self) -> None:
self.gguf.write_header_to_file()
self.gguf.write_kv_data_to_file()
def write_tensor_info(self) -> None:
self.gguf.write_ti_data_to_file()
def close(self) -> None:
self.gguf.close()
@staticmethod
def write_vocab_only(
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
pad_vocab: bool = False,
) -> None:
check_vocab_size(params, vocab, pad_vocab = pad_vocab)
of = OutputFile(fname_out, endianess=endianess)
# meta data
of.add_meta_arch(params)
of.add_meta_vocab(vocab)
of.add_meta_special_vocab(svocab)
of.write_meta()
of.close()
@staticmethod
def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]:
name, lazy_tensor = item
tensor = lazy_tensor.load().to_ggml()
return (lazy_tensor.data_type, tensor.ndarray)
@staticmethod
def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray:
dt, arr = item
if not isinstance(dt, QuantizedDataType):
return arr
return dt.quantize(arr)
@staticmethod
def write_all(
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab,
concurrency: int = DEFAULT_CONCURRENCY,
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
pad_vocab: bool = False,
) -> None:
check_vocab_size(params, vocab, pad_vocab = pad_vocab)
of = OutputFile(fname_out, endianess=endianess)
# meta data
of.add_meta_arch(params)
of.add_meta_vocab(vocab)
of.add_meta_special_vocab(svocab)
# tensor info
for name, lazy_tensor in model.items():