-
Notifications
You must be signed in to change notification settings - Fork 23
/
run-travis-tests.sh
executable file
·84 lines (70 loc) · 2.57 KB
/
run-travis-tests.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#!/bin/bash
# TODO(hamaji): Revive -u if possible.
# set -eux
set -ex
run() {
set +x
travis_fold start $1
travis_time_start
local n=$1
shift
echo "Command: $@"
/usr/bin/time "$@"
travis_time_finish
set -x
travis_fold end $n
}
pushd third_party/chainer
CHAINER_WHL_CACHE_DIR=$HOME/dist-chainer/$TRAVIS_OS_NAME/$(git rev-parse --short HEAD)
popd
if [[ -d $CHAINER_WHL_CACHE_DIR ]]; then
echo "Use cached chainer wheel"
else
run pip_wheel sudo pip3 install wheel
pushd third_party/chainer
run chainer_whl python3 setup.py bdist_wheel
popd
rm -rf $HOME/dist-chainer/*
mkdir -p $CHAINER_WHL_CACHE_DIR
cp -p third_party/chainer/dist/*.whl $CHAINER_WHL_CACHE_DIR
fi
run pip_chainer sudo pip3 install $CHAINER_WHL_CACHE_DIR/*.whl
run update_pip sudo pip3 install -U pip
run pip_dependencies sudo pip3 install --progress-bar off gast==0.3.2 chainercv 'onnx>=1.4.0,<1.6' 'pytest<5.0.0' zipp==1.0.0 torch==1.4.0
run pip_list pip3 list -v
mkdir build
cd build
run cmake cmake .. \
-DCHAINER_COMPILER_ENABLE_PYTHON=ON \
-DPYTHON_EXECUTABLE=$(which python3) \
-DCHAINER_COMPILER_ENABLE_OPENCV=ON \
-DCHAINER_COMPILER_PREBUILT_CHAINERX_DIR=$(pip3 show chainer | awk '/^Location: / {print $2}')/chainerx
run make make -j2
run large_tests make large_tests
run unit_tests ctest -V
cd ..
./scripts/checkout-onnx-worktrees.sh
PYTHONPATH=. run runtests ./scripts/runtests.py --target_opsets=8,9,10 2>&1
PYTHONPATH=. run pytest pytest -sv tests
PYTHONPATH=. run canonicalizer_tests pytest testcases/elichika_tests/canonicalizer
PYTHONPATH=. run train_mnist_export python3 examples/mnist/train_mnist.py \
-d -1 --export /tmp/tmp_mnist_model.onnx -I 3 --use-fake-data
PYTHONPATH=. run train_mnist_compile python3 examples/mnist/train_mnist.py \
-d native --compile /tmp/tmp_mnist_model.onnx -I 3 --use-fake-data
mkdir -p npy_outputs
run dump_outputs_dir ./build/tools/run_onnx out/elichika_syntax_For_basic1 \
--dump_outputs_dir=npy_outputs
# There should be at least a single output dump.
ls -l npy_outputs/*.npy
run tools_dump ./build/tools/dump out/elichika_model_MLP_backprop
run run_onnx_verbose \
./build/tools/run_onnx --test out/elichika_model_MLP \
--verbose --compiler_log --chrome_tracing mlp.json
ls -l mlp.json
run run_onnx_trace sh -c \
'./build/tools/run_onnx --test out/elichika_model_EspNet_E2E --trace 2>&1 | head -100'
run run_onnx_alex \
./build/tools/run_onnx out/elichika_model_Alex \
--check_infs --check_nans --strip_chxvm
run run_onnx_googlenet \
./build/tools/run_onnx out/elichika_model_GoogleNet