-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path05_CN.qmd
238 lines (191 loc) · 6.59 KB
/
05_CN.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# SCS Curve number method
```{r, message=FALSE, echo=FALSE}
library(rvest)
```
```{r, message=FALSE, include=FALSE}
library(tidyverse)
CN_tbl <- rvest::read_html(
x = "https://www.hec.usace.army.mil/confluence/hmsdocs/hmstrm/cn-tables") |>
html_element(xpath = '//*[@id="main-content"]/div/div/div[1]/table') |>
html_table(trim = TRUE, fill = TRUE)
CN_tbl |>
janitor::clean_names() |>
mutate(cover_description = str_remove_all(cover_description, pattern = "\\."))
```
The SCS curve number (CN) is a method developed by the USDA in 1995, when is was formerly named Soil Conservation Service, hence the SCS in the name. [^05_cn-1] CN helps with the estimation of runoff at basins where no runoff has been measured. The CN (curve number) ranges from 0 to 100 and is a dimensionless index representing the combined effect of LU/LC, Soil type and hydrological conditions. CN is used to calculate the potential maximum retention capacity $S$
[^05_cn-1]: https://edepot.wur.nl/183157
$$
S = \dfrac{25400}{CN}-254
$$ where the CN = 0 means complete infiltration, CN = 100 no infiltration at all.
The method estimates the precipitation excess $P_e$ as a function of the cumulative precipitation depth, soil cover, land use, and antecedent soil moisture as
$$
P_e = \begin{cases}
0, \text{ for }\qquad P < I_a\\
\dfrac{(P-I_a)^2}{P - I_a + S}\qquad \text{otherwise }
\end{cases}
$$
where $P_e$ is accumulated precipitation excess. $P$ is the accummulated precipitation depth, $I_a$ is the initial abstraction (loss) and $S$ is the potential maximum retention
<!-- $$ -->
<!-- \dfrac{F}{S} = \dfrac{Q}{P-I_a} -->
<!-- $$ -->
$$
I_a = rS\approx0.2\cdot S
$$
$$
S = \dfrac{1000}{\mathrm{CN}}-10\:\mathrm{[mm]}
$$ where $S$ is a potential maximum retention after the initial runoff.
$$
Q = \dfrac{(P-I_a)^2}{(P-I_a)+S}
$$
```{r}
LCLU_tbl <- data.frame(LCLU = c("Pasture", "Road", "Legumes"),
AreaFrac = c(54, 20, 26))
LCLU_tbl
weather_db <- data.frame(
dtm = seq(as.Date("2024-01-01"), as.Date("2024-11-30"), "1 day"),
P = sample(size = 335, c(0, 1), replace = TRUE)*rweibull(335, shape = 1))
head(weather_db)
```
```{r}
# Function to calculate direct runoff using SCS CN method
scs_cn_method <- function(P, CN) {
S <- (25400 / CN) - 254 #<1>
Ia <- 0.1 * S #<1>
ifelse(P <= Ia, 0, ((P - Ia)^2) / (P - Ia + S)) #<3>
}
```
1. Maximum potential retention (mm)
2. Initial abstraction/losses (mm)
3. Calculate runoff
```{r, fig.align='center', fig.width=10}
precipitation <- seq(0, 200, by = 1) # <1>
curve_numbers <- seq(from = 40, to = 100, by = 5) # <2>
# Calculate runoff for each CN
runoff_results <- sapply(curve_numbers, function(CN) {
sapply(precipitation, scs_cn_method, CN = CN)
})
# Plot results
plot(NULL,
xlim = c(0, max(precipitation)),
ylim = c(0, max(runoff_results)),
xlab = "Precipitation (mm)",
ylab = "Runoff (mm)",
main = "SCS Curve Number Method: Runoff vs. Precipitation")
for (i in seq_along(curve_numbers)) { #<5>
lines(precipitation,
runoff_results[, i],
col = "black",
lty = i,
lwd = 1)
}
# Add legend
legend("topright",
legend = paste("CN =", curve_numbers),
col = "black",
lty = i,
lwd = 1)
```
5. Add lines for each CN
1. Theoretical rainfall from 0 to 200 mm
2. CN values
3. Compute runoff using the SCS CN method
```{r}
dat01138000 <- read.fwf("data/01138000.dly",
widths = c(8, rep(10, 5))) |>
mutate(V1 = as.Date(gsub(V1,
pattern = " ",
replacement = "0"),
format = "%Y%m%d"))
names(dat01138000) <- c("dtm", "prec", "r", "pet", "tmax", "tmin")
dat01138000[which(dat01138000$prec == -99), "prec"] <- NA
head(dat01138000)
```
```{r, fig.align='center', fig.width=10}
# Example measured precipitation time series (daily data in mm)
precipitation <- dat01138000$prec[100:1000]
# Define Curve Number
CN <- 75 # Example value for a watershed
# Calculate runoff for each day
runoff <- sapply(precipitation, scs_cn_method, CN = CN)
# Create a time vector for plotting
days <- seq_along(precipitation)
# Plot precipitation and runoff
plot(days,
precipitation,
type = "h",
col = "black",
lwd = 0.5,
ylim = c(0, max(c(precipitation, runoff), na.rm = TRUE)),
xlab = "Day",
ylab = "Value (mm)",
main = "CN based Precipitation and Runoff",
lty = 3)
lines(x = days,
y = runoff,
type = "h",
col = "#0088BB",
lty = 1,
lwd = 1.5)
legend("topright",
legend = c("Precipitation", "Runoff"),
col = c("black", "#0088BB"),
lty = c(3, 1),
lwd = c(0.5, 1.5))
```
```{r, fig.align='center', fig.width=9, echo=FALSE}
# library(sf)
# library(rworldxtra)
# library(ggplot2)
# library(tidyterra)
#
# data(countriesHigh)
#
# domain <- countriesHigh |>
# st_as_sf() |>
# filter(NAME == "Czech Rep.")
#
# sfc <- st_sfc(st_polygon(list(rbind(c(st_bbox(domain)[1], st_bbox(cz)[2]),
# c(st_bbox(domain)[3], st_bbox(domain)[2]),
# c(st_bbox(domain)[3], st_bbox(domain)[4]),
# c(st_bbox(domain)[1], st_bbox(domain)[4]),
# c(st_bbox(domain)[1], st_bbox(domain)[2])))), crs = 4326)
# domain_pts <- st_sample(sfc, 100, type = "random")
# x <- domain_pts |>
# st_union() |>
# st_convex_hull()
#
#
# plot(domain)
# domain_pts <- domain_pts |>
# st_transform(crs = 5514) |>
# st_union() |>
# st_triangulate()
#
# domain_tr <- st_cast(st_geometry(domain_pts), to = "MULTIPOINT") |>
# st_cast(to = "MULTILINESTRING") |>
# st_cast(to = "POLYGON")
#
# sf_polygons <- st_as_sf(data.frame(id = seq_along(domain_tr)), geometry = domain_tr)
# plot(sf_polygons)
# # st_voronoi(envelope = x) |>
# ggplot() +
# geom_sf(fill = "#efefef") +
# geom_sf(data = cz_pts) +
# theme_minimal(base_size = 16)
```
<!-- Now we have domain, created from using a convex hull of sampled points. -->
::: callout-tip
## Exercise
In practice we would have more than one CN type in the watershed. Estimate the
runoff from the watershed using the SCS CN method. Using the following
data.
| HRU | Area | CN$_i$ |
|-----|------|-----------|
| 1 | 20 | 70 |
| 2 | 16 | 84 |
| 3 | 64 | 74 |
Compare two approaches to calculate runoff.\
a) Weighted average CN curve.\
b) Weighted contribution to discharge (separate contribution, first compute
runoff and weight apply weights by fraction of area).
:::