-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
66 lines (53 loc) · 2.05 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from collections import OrderedDict
from options.train_options import TrainOptions
from options.test_options import TestOptions
from data import CreateDataLoader
from models import create_model
from util.visualizer import Visualizer
from PIL import Image
import visdom
from util.util import sdmkdir
from util import util
import time
import os
opt = TrainOptions().parse()
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
model = create_model(opt)
model.setup(opt)
visualizer = Visualizer(opt)
total_steps = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
model.epoch = epoch
model.train()
for i, data in enumerate(dataset):
iter_start_time = time.time()
total_steps += opt.batch_size
epoch_iter += opt.batch_size
model.set_input(data)
model.optimize_parameters()
model.cepoch=epoch
##############Visualization block
if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
visualizer.display_current_results(model.get_current_visuals(), epoch)
if total_steps % opt.print_freq == 0:
errors = model.get_current_losses()
t = (time.time() - iter_start_time) / opt.batch_size
# visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter)/dataset_size, opt, errors)
###################################
if epoch % 8 == 0:
model.save_networks('latest')
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()