-
Notifications
You must be signed in to change notification settings - Fork 0
/
probcs.tex
executable file
·506 lines (364 loc) · 18.7 KB
/
probcs.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% filename: probcs.tex %
% version: 1.01 %
% date: 6th November 2010 %
% author: Peleg Michaeli %
% copyright: no copyright at all %
% email: [email protected] %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% NO COPYRIGHT AT ALL. This work is released to the public domain. (a notice)
% ---------------------------------------------------------------------------
% We, the persons who have associated work with this specific document/file
%("We") hereby dedicates whatever copyright We hold in the work of authorship
% identified below (the "Work") to the PUBLIC DOMAIN; Moreover, We dedicate
% any copyright interest We may have in the associated work.
%
% We make this dedication for the benefit of the public at large and to the
% detriment of our heirs and successors. We intend this dedication to be an
% overt act of relinquishment in perpetuity of all % present and future
% rights under copyright law whether vested or contingent, in the Work. We
% understand that such relinquishment of all rights includes the
% relinquishment of all rights to enforce (by lawsuit or otherwise) those
% copyrights in the Work.
%
% We recognize that, once placed in the public domain, the Work may be freely
% reproduced, distributed, transmitted, used, copied, modified, merged,
% published, built upon, or otherwise exploited by anyone for any purpose,
% commercial or non-commercial, and in any way, including by methods that
% have not yet been invented or conceived.
%
% This notice applies to the associated document/file and to it alone.
%
% This notice applies worldwide; in cases this is not legally possible, We
% grant anyone the right to use this work in any way and for any purpose,
% including without limitation the rights to reproduce, distribute, transmit,
% use, copy, modify, merge, publish, build upon, and/or sell copies of this
% document/file, under no terms or conditions.
%
% You (the reader of this notice) are NOT obliged to include this notice in
% copies or portions of this document/file; You are highly encouraged to do
% so, though.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[10pt,landscape]{article}
\usepackage{multicol}
\usepackage{calc}
\usepackage{ifthen}
\usepackage{amsfonts,amsmath}
\usepackage[landscape]{geometry}
\ifthenelse{\lengthtest { \paperwidth = 11in}}
{ \geometry{top=.5in,left=.5in,right=.5in,bottom=.5in} }
{\ifthenelse{ \lengthtest{ \paperwidth = 297mm}}
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
{\geometry{top=1cm,left=1cm,right=1cm,bottom=1cm} }
}
\pagestyle{empty}
\makeatletter
\renewcommand{\section}{\@startsection{section}{1}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%x
{\normalfont\large\bfseries}}
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}%
{-1explus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%
{\normalfont\normalsize\bfseries}}
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{1ex plus .2ex}%
{\normalfont\small\bfseries}}
\makeatother
\setcounter{secnumdepth}{0}
\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt plus 0.5ex} % somehow "0pt plus" really changes!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\renewcommand\arraystretch{2}
\raggedright
\footnotesize
\begin{multicols}{4}
\setlength{\columnseprule}{0.2pt}
\setlength{\premulticols}{1pt}
\setlength{\postmulticols}{1pt}
\setlength{\multicolsep}{1pt}
\setlength{\columnsep}{2pt}
\newcommand{\p}[1]{\mathbb{P}\left({#1}\right)}
\newcommand{\var}[1]{\text{Var}\left({#1}\right)}
\newcommand{\e}[1]{\mathbb{E}\left({#1}\right)}
\newcommand{\cov}[1]{\text{Cov}\left({#1}\right)}
\begin{center}
\Large{\textbf{Probability Cheat Sheet}} \\
\end{center}
\section{Distributions}
\subsection{Unifrom Distribution}
\begin{tabular}{@{}ll@{}}
\verb!notation! & $\displaystyle{U\left[a,b\right]}$ \\
\verb!cdf! & $\displaystyle{\frac{x-a}{b-a}}$ for $\displaystyle{x\in\left[a,b\right]}$ \\
\verb!pdf! & $\displaystyle{\frac{1}{b-a}}$ for $\displaystyle{x\in\left[a,b\right]}$ \\
\verb!expectation! & $\displaystyle{\frac{1}{2}\left(a+b\right)}$ \\
\verb!variance! & $\displaystyle{\frac{1}{12}\left(b-a\right)^2}$ \\
\verb!mgf! & $\displaystyle{\frac{e^{tb}-e^{ta}}{t\left(b-a\right)}}$
\end{tabular}
\verb!story:! all intervals of the same length on the distribution's
support are equally probable.
\subsection{Gamma Distribution}
\begin{tabular}{@{}ll@{}}
\verb!notation! & $\displaystyle{Gamma\left(k,\theta\right)}$ \\
\verb!pdf! & $\displaystyle{\frac{\theta^k x^{k-1}e^{-\theta
x}}{\Gamma\left(k\right)}\mathbb{I}_{x>0}}$ \\
& $\displaystyle{\Gamma\left(k\right)=\int_0^\infty
x^{k-1}e^{-x}dx}$ \\
\verb!expectation! & $\displaystyle{k\theta}$ \\
\verb!variance! & $\displaystyle{k\theta^2}$ \\
\verb!mgf! & $\displaystyle{\left(1-\theta t\right)^{-k}}$ for
$\displaystyle{t<\frac{1}{\theta}}$ \\
\verb!ind. sum! & $\displaystyle{\sum_{i=1}^nX_i\sim Gamma\left(\sum_{i=1}^nk_i,\theta\right)}$
\end{tabular}
\verb!story:! the sum of k independent exponentially distributed random variables, each of which has
a mean of $\theta$ (which is equivalent to a rate parameter of $\theta^{-1}$).
\subsection{Geometric Distribution}
\begin{tabular}{@{}ll@{}}
\verb!notation! & $\displaystyle{G\left(p\right)}$ \\
\verb!cdf! & $\displaystyle{1-\left(1-p\right)^k}$ for $\displaystyle{k\in\mathbb{N}}$ \\
\verb!pmf! & $\displaystyle{\left(1-p\right)^{k-1}p}$ for $\displaystyle{k\in\mathbb{N}}$ \\
\verb!expectation! & $\displaystyle{\frac{1}{p}}$ \\
\verb!variance! & $\displaystyle{\frac{1-p}{p^2}}$ \\
\verb!mgf! & $\displaystyle{\frac{pe^t}{1-\left(1-p\right)e^t}}$
\end{tabular}
\verb!story:! the number X of Bernoulli trials needed to get one success. Memoryless.
\subsection{Poisson Distribution}
\begin{tabular}{@{}ll@{}}
\verb!notation! & $\displaystyle{Poisson\left(\lambda\right)}$ \\
\verb!cdf! & $\displaystyle{e^{-\lambda}\sum_{i=0}^k\frac{\lambda^i}{i!}}$ \\
\verb!pmf! & $\displaystyle{\frac{\lambda^k}{k!}\cdot e^{-\lambda}}$ for $\displaystyle{k\in\mathbb{N}}$ \\
\verb!expectation! & $\displaystyle{\lambda}$ \\
\verb!variance! & $\displaystyle{\lambda}$ \\
\verb!mgf! & $\displaystyle{\exp{\left(\lambda\left(e^t-1\right)\right)}}$ \\
\verb!ind. sum! & $\displaystyle{\sum_{i=1}^nX_i\sim Poisson\left(\sum_{i=1}^n\lambda_i\right)}$
\end{tabular}
\verb!story:! the probability of a number of events occurring in a fixed period of time if these
events occur with a known average rate and independently of the time since the last event.
\subsection{Normal Distribution}
\begin{tabular}{@{}ll@{}}
\verb!notation! & $\displaystyle{N\left(\mu,\sigma^2\right)}$ \\
\verb!pdf! & $\displaystyle{\frac{1}{\sqrt{2\pi\sigma^2}}
e^{-\left(x-\mu\right)^2/\left(2\sigma^2\right)}}$ \\
\verb!expectation! & $\displaystyle{\mu}$ \\
\verb!variance! & $\displaystyle{\sigma^2}$ \\
\verb!mgf! & $\displaystyle{\exp{\left(\mu t+\frac{1}{2}\sigma^2t^2\right)}}$ \\
\verb!ind. sum! & $\displaystyle{\sum_{i=1}^nX_i\sim
N\left(\sum_{i=1}^n\mu_i,\sum_{i=1}^n\sigma_i^2\right)}$
\end{tabular}
\verb!story:! describes data that cluster around the mean.
\subsection{Standard Normal Distribution}
\begin{tabular}{@{}ll@{}}
\verb!notation! & $\displaystyle{N\left(0,1\right)}$ \\
\verb!cdf! & $\displaystyle{\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-t^2/2}dt}$ \\
\verb!pdf! & $\displaystyle{\frac{1}{\sqrt{2\pi}}e^{-x^2/2}}$ \\
\verb!expectation! & $\displaystyle{\frac{1}{\lambda}}$ \\
\verb!variance! & $\displaystyle{\frac{1}{\lambda^2}}$ \\
\verb!mgf! & $\displaystyle{\exp{\left(\frac{t^2}{2}\right)}}$
\end{tabular}
\verb!story:! normal distribution with $\mu=0$ and $\sigma=1$.
\subsection{Exponential Distribution}
\begin{tabular}{@{}ll@{}}
\verb!notation! & $\displaystyle{exp\left(\lambda\right)}$ \\
\verb!cdf! & $\displaystyle{1-e^{-\lambda x}}$ for $\displaystyle{x\ge 0}$ \\
\verb!pdf! & $\displaystyle{\lambda e^{-\lambda x}}$ for $\displaystyle{x\ge 0}$ \\
\verb!expectation! & $\displaystyle{\frac{1}{\lambda}}$ \\
\verb!variance! & $\displaystyle{\frac{1}{\lambda^2}}$ \\
\verb!mgf! & $\displaystyle{\frac{\lambda}{\lambda-t}}$ \\
\verb!ind. sum! & $\displaystyle{\sum_{i=1}^kX_i\sim Gamma\left(k,\lambda\right)}$ \\
\verb!minimum! & $\displaystyle{\sim exp\left(\sum_{i=1}^k\lambda_i\right)}$
\end{tabular}
\verb!story:! the amount of time until some specific event occurs, starting from now,
being memoryless.
\subsection{Binomial Distribution}
\begin{tabular}{@{}ll@{}}
\verb!notation! & $\displaystyle{Bin(n,p)}$ \\
\verb!cdf! & $\displaystyle{\sum_{i=0}^k {n \choose i} p^i\left(1-p\right)^{n-i}}$ \\
\verb!pmf! & $\displaystyle{{n \choose i} p^i\left(1-p\right)^{n-i}}$ \\
\verb!expectation! & $\displaystyle{np}$ \\
\verb!variance! & $\displaystyle{np\left(1-p\right)}$ \\
\verb!mgf! & $\displaystyle{\left(1-p+pe^t\right)^n}$
\end{tabular}
\verb!story:! the discrete probability distribution of the number of successes in a sequence of $n$
independent yes/no experiments, each of which yields success with probability $p$.
\rule{\linewidth}{2.5pt}
\section{Basics}
\subsection{Comulative Distribution Function}
$\displaystyle{F_X\left(x\right)=\p{X\le x}}$
\subsection{Probability Density Function}
$\displaystyle{F_X\left(x\right)=\int_{-\infty}^{\infty}f_X\left(t\right)dt}$
$\displaystyle{\int_{-\infty}^{\infty}f_X\left(t\right)dt=1}$
$\displaystyle{f_X\left(x\right)=\frac{d}{dx}F_X\left(x\right)}$
\subsection{Quantile Function}
The function $X^*:\left[0,1\right]\to\mathbb{R}$ for which for any $p\in\left[0,1\right]$,
$F_X\left(X^*\left(p\right)^{-}\right)\le p \le F_X\left(X^*\left(p\right)\right)$
$\displaystyle{F_{X^*}=F_X}$
$\displaystyle{\e{X^*}=\e{X}}$
\subsection{Expectation}
$\displaystyle{\e{X}=\int_0^1X^*(p)dp}$
$\displaystyle{\e{X}=\int_{-\infty}^0F_X\left(t\right)dt+\int_0^{\infty}\left(1-F_X\left(t\right)\right)dt}$
$\displaystyle{\e{X}=\int_{-\infty}^{\infty}xf_X{x}dx}$
$\displaystyle{\e{g\left(X\right)}=\int_{-\infty}^{\infty}g\left(x\right)f_X{x}dx}$
$\displaystyle{\e{aX+b}=a\e{X}+b}$
\subsection{Variance}
$\displaystyle{\var{X}=\e{X^2}-\left(\e{X}\right)^2}$
$\displaystyle{\var{X}=\e{\left(X-\e{X}\right)^2}}$
$\displaystyle{\var{aX+b}=a^2\var{X}}$
\subsection{Standard Deviation}
$\displaystyle{\sigma\left(X\right)=\sqrt{\var{X}}}$
\subsection{Covariance}
$\displaystyle{\cov{X,Y}=\e{XY}-\e{X}\e{Y}}$
$\displaystyle{\cov{X,Y}=\e{\left(X-\e{x}\right)\left(Y-\e{Y}\right)}}$
$\displaystyle{\var{X+Y}=\var{X}+\var{Y}+2\cov{X,Y}}$
\subsection{Correlation Coefficient}
$\displaystyle{\rho_{X,Y}=\frac{\cov{X,Y}}{\sigma_X,\sigma_Y}}$
\subsection{Moment Generating Function}
$\displaystyle{M_X\left(t\right)=\e{e^{tX}}}$
$\displaystyle{\e{X^n}=M_X^{\left(n\right)}\left(0\right)}$
$\displaystyle{M_{aX+b}\left(t\right)=e^{tb}M_{aX}\left(t\right)}$
\rule{\linewidth}{2.5pt}
\pagebreak
\section{Joint Distribution}
$\displaystyle{\mathbb{P}_{X,Y}\left(B\right)=\mathbb{P}\left(\left(X,Y\right)\in B\right)}$
$\displaystyle{F_{X,Y}\left(x,y\right)=\mathbb{P}\left(X\le x,Y\le y\right)}$
\subsection{Joint Density}
$\displaystyle{\mathbb{P}_{X,Y}\left(B\right)=\iint_B f_{X,Y}\left(s,t\right)dsdt}$
$\displaystyle{F_{X,Y}\left(x,y\right)=\int_{-\infty}^x\int_{-\infty}^yf_{X,Y}\left(s,t\right)dtds}$
$\displaystyle{\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f_{X,Y}\left(s,t\right)dsdt=1}$
\subsection{Marginal Distributions}
$\displaystyle{\mathbb{P}_X\left(B\right) = \mathbb{P}_{X,Y}\left(B\times\mathbb{R}\right)}$
$\displaystyle{\mathbb{P}_Y\left(B\right) = \mathbb{P}_{X,Y}\left(\mathbb{R}\times Y\right)}$
$\displaystyle{F_X\left(a\right) =
\int_{-\infty}^a\int_{-\infty}^{\infty}f_{X,Y}\left(s,t\right)dtds}$
$\displaystyle{F_Y\left(b\right) =
\int_{-\infty}^b\int_{-\infty}^{\infty}f_{X,Y}\left(s,t\right)dsdt}$
\subsection{Marginal Densities}
$\displaystyle{f_X\left(s\right)=\int_{-\infty}^{\infty}f_{X,Y}(s,t)dt}$
$\displaystyle{f_Y\left(t\right)=\int_{-\infty}^{\infty}f_{X,Y}(s,t)ds}$
\subsection{Joint Expectation}
$\displaystyle{\mathbb{E}\left(\varphi\left(X,Y\right)\right)=\iint_{\mathbb{R}^2}\varphi\left(x,y\right)f_{X,Y}\left(x,y\right)dxdy}$
\rule{\linewidth}{2.5pt}
\section{Independent r.v.}
$\displaystyle{\mathbb{P}\left(X\le x,Y\le y\right)=\mathbb{P}\left(X\le
x\right)\mathbb{P}\left(Y\le y\right)}$
$\displaystyle{F_{X,Y}\left(x,y\right)=F_X\left(x\right)F_Y\left(y\right)}$
$\displaystyle{f_{X,Y}\left(s,t\right)=f_X\left(s\right)f_Y\left(t\right)}$
$\displaystyle{\e{XY}=\e{X}\e{Y}}$
$\displaystyle{\var{X+Y}=\var{X}+\var{Y}}$
Independent events:
$\displaystyle{\p{A\cap B}=\p{A}\p{B}}$
\rule{\linewidth}{2.5pt}
\section{Conditional Probability}
$\displaystyle{\mathbb{P}\left(A\mid B\right)=\frac{\mathbb{P}\left(A\cap
B\right)}{\mathbb{P}\left(B\right)}}$
\verb!bayes! $\displaystyle{\p{A\mid B}=\frac{\p{B\mid A}\p{A}}{\p{B}}}$
\subsection{Conditional Density}
$\displaystyle{f_{X\mid Y=y}\left(x\right)=\frac{f_{X,Y}\left(x,y\right)}{f_Y\left(y\right)}}$
$\displaystyle{f_{X\mid Y=n}\left(x\right)=\frac{f_X\left(x\right)\mathbb{P}\left(Y=n\mid
X=x\right)}{\mathbb{P}\left(Y=n\right)}}$
$\displaystyle{F_{X\mid Y=y} = \int_{-\infty}^{x}f_{X\mid Y=y}\left(t\right)dt}$
\subsection{Conditional Expectation}
$\displaystyle{\e{X\mid Y=y}=\int_{-\infty}^\infty xf_{X\mid Y=y}\left(x\right)dx}$
$\displaystyle{\e{\e{X\mid Y}} = \e{X}}$
$\displaystyle{\p{Y=n}=\e{\mathbb{I}_{Y=n}}=\e{\e{\mathbb{I}_{Y=n}\mid X}}}$
\rule{\linewidth}{2.5pt}
\section{Sequences and Limits}
$\displaystyle{\limsup A_n = \left\{A_n \text{ i.o.}\right\} = \bigcap_{m=1}^\infty
\bigcup_{n=m}^\infty A_n}$
$\displaystyle{\liminf A_n = \left\{A_n \text{ eventually}\right\} = \bigcup_{m=1}^\infty
\bigcap_{n=m}^\infty A_n}$
$\displaystyle{\liminf A_n \subseteq \limsup A_n}$
$\displaystyle{\left(\limsup A_n\right)^c = \liminf A_n^c}$
$\displaystyle{\left(\liminf A_n\right)^c = \limsup A_n^c}$
$\displaystyle{\p{\limsup A_n} = \lim_{n\to\infty}\p{\bigcup_{n=m}^\infty A_n}}$
$\displaystyle{\p{\liminf A_n} = \lim_{n\to\infty}\p{\bigcap_{n=m}^\infty A_n}}$
\subsection{Borel-Cantelli Lemma}
$\displaystyle{\sum_{n=1}^\infty\p{A_n}<\infty \Rightarrow \p{\limsup A_n}=0}$
And if $A_n$ are independent:
$\displaystyle{\sum_{n=1}^\infty\p{A_n}=\infty \Rightarrow \p{\limsup A_n}=1}$
\rule{\linewidth}{2.5pt}
\section{Convergence}
\subsection{Convergence in Probability}
\begin{tabular}{@{}ll@{}}
\verb!notation! & $\displaystyle{X_n\xrightarrow{p}X}$ \\
\verb!meaning! & $\displaystyle{\lim_{n\to\infty}\p{\left|X_n-X\right|>\varepsilon}=0}$
\end{tabular}
\subsection{Convergence in Distribution}
\begin{tabular}{@{}ll@{}}
\verb!notation! & $\displaystyle{X_n\xrightarrow{D}X}$ \\
\verb!meaning! & $\displaystyle{\lim_{n\to\infty}F_n\left(x\right)=F\left(x\right)}$
\end{tabular}
\subsection{Almost Sure Convergence}
\begin{tabular}{@{}ll@{}}
\verb!notation! & $\displaystyle{X_n\xrightarrow{a.s.}X}$ \\
\verb!meaning! & $\displaystyle{\p{\lim_{n\to\infty}X_n=X}=1}$
\end{tabular}
\subsubsection{Criteria for a.s. Convergence}
\begin{itemize}\setlength{\itemindent}{-1.5em}
\item $\displaystyle{\forall\varepsilon \exists N \forall n>N:\p{\left|X_n-X\right|<\varepsilon}>1-\varepsilon}$
\item $\displaystyle{\forall\varepsilon \p{\limsup\left(\left|X_n-X\right|>\varepsilon\right)}=0}$
\item $\displaystyle{\forall\varepsilon
\sum_{n=1}^\infty\p{\left|X_n-X\right|>\varepsilon}<\infty}$ (by B.C.)
\end{itemize}
\subsection{Convergence in $L_p$}
\begin{tabular}{@{}ll@{}}
\verb!notation! & $\displaystyle{X_n\xrightarrow{L_p}X}$ \\
\verb!meaning! & $\displaystyle{\lim_{n\to\infty}\e{\left|X_n-X\right|^p}=0}$
\end{tabular}
\subsection{Relationships}
$$\begin{matrix}
\xrightarrow{L_q} & \underset{q>p\ge 1}{\Rightarrow} & \xrightarrow{L_p} & & \\
& & \Downarrow & & \\
\xrightarrow{a.s.} & \Rightarrow & \xrightarrow{\ p\ } & \Rightarrow & \xrightarrow{\ D\ }
\end{matrix}$$
If $X_n\xrightarrow{D} c$ then $X_n\xrightarrow{p} c$
If $\displaystyle{X_n\xrightarrow{p}X}$ then there exists a subsequence $n_k$ s.t.
$\displaystyle{X_{n_k}\xrightarrow{a.s.}X}$
\subsection{Laws of Large Numbers}
If $X_i$ are i.i.d. r.v.,
\begin{tabular}{@{}ll@{}}
\verb!weak law! & $\displaystyle{\overline{X_n}\xrightarrow{p}\e{X_1}}$ \\
\verb!strong law! & $\displaystyle{\overline{X_n}\xrightarrow{a.s.}\e{X_1}}$
\end{tabular}
\subsection{Central Limit Theorem}
$\displaystyle{\frac{S_n-n\mu}{\sigma\sqrt{n}}\xrightarrow{D}N\left(0,1\right)}$
If $t_n\to t$, then
$\displaystyle{\p{\frac{S_n-n\mu}{\sigma\sqrt{n}}\le t_n}\to\Phi\left(t\right)}$
\rule{\linewidth}{2.5pt}
\section{Inequalities}
\subsection{Markov's inequality}
$\displaystyle{\p{\left|X\right|\ge t}\le\frac{\e{\left|X\right|}}{t}}$
\subsection{Chebyshev's inequality}
$\displaystyle{\p{\left|X-\e{X}\right|\ge\varepsilon}\le\frac{\var{X}}{\varepsilon^2}}$
\subsection{Chernoff's inequality}
Let $X\sim Bin(n,p)$; then:
$\displaystyle{\p{X-\e{X}>t\sigma\left(X\right)}<e^{-t^2/2}}$
Simpler result; for every $X$:
$\displaystyle{\p{X\ge a} \le M_X\left(t\right)e^{-ta}}$
\subsection{Jensen's inequality}
for $\varphi$ a convex function,
$\displaystyle{\varphi\left(\e{X}\right)\le\e{\varphi\left(X\right)}}$
\rule{\linewidth}{2.5pt}
\section{Miscellaneous}
$\displaystyle{\mathbb{E}\left(Y\right)<\infty \iff
\sum_{n=0}^\infty\mathbb{P}\left(Y>n\right)<\infty}$ ($Y\ge 0$)
$\displaystyle{\mathbb{E}\left(X\right)=\sum_{n=0}^\infty\mathbb{P}\left(X>n\right)}$
($X\in\mathbb{N}$)
$\displaystyle{X\sim U\left(0,1\right) \iff -\ln{X}\sim exp\left(1\right)}$
\subsection{Convolution}
For ind. $X,Y$, $Z=X+Y$:
$\displaystyle{f_Z\left(z\right) = \int_{-\infty}^\infty f_X\left(s\right)f_Y\left(z-s\right)ds}$
\subsection{Kolmogorov's 0-1 Law}
If $A$ is in the tail $\sigma$-algebra $\mathcal{F}^t$, then $\p{A}=0$ or $\p{A}=1$
\subsection{Ugly Stuff}
cdf of Gamma distribution:
$\displaystyle{\int_0^t\frac{\theta^kx^{k-1}e^{-\theta k}}{\left(k-1\right)!}dx}$
\vspace{5em}
\rule{0.3\linewidth}{0.25pt}
\scriptsize
This cheatsheet was made by Peleg Michaeli in November 2010, using \LaTeX.
version: 1.01
comments: [email protected]
\end{multicols}
\end{document}