-
Notifications
You must be signed in to change notification settings - Fork 46
/
main.py
83 lines (68 loc) · 3.76 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os
import cv2
import numpy as np
import tensorflow as tf
import argparse
from utils import load_train,draw_loss_plot
from model import SRCNN
from tensorflow.keras.models import model_from_json
parser = argparse.ArgumentParser()
parser.add_argument('--Image_patch_size', type=int, default=33,
help="size of a patch to be used for training: default 33 ")
parser.add_argument('--Epochs', type=int, default=1500,
help="Numberof epochs used for training : default 1500")
parser.add_argument('--lr', type=float, default=0.0001,
help="Learning_rate used in the optimizing algorithm: default 0.0001")
parser.add_argument('--Scale', type=int, default=3,
help="Scale by which a HR image is downscaled to low spatial resolution image and then by the same scale it is upscaled using inter-cubic interpolation: default 3 ")
parser.add_argument('--BATCH_SIZE', type=int, default=128,
help="Batch size, default 128")
parser.add_argument('--Stride', type=int, default=14,
help="Stride used when selecting patches of image_patch_size from a image:default 14")
parser.add_argument('--is_training',type =bool,default= True,
help="decide whether to train the model on a dataset or test the pre-trained model: default True")
parser.add_argument('--dirname_train',type =str,default= '/content/drive/My Drive/train',
help="name of the directory where training dataset is stored")
parser.add_argument('--dirname_test',type =str,default= '/content/drive/My Drive/test',
help="name of the directory where testing dataset is stored")
args = parser.parse_args()
image_size = args.Image_patch_size #image_patch_size
stride = args.Stride
scale = args.Scale
learning_rate = args.lr
batch_size = args.BATCH_SIZE
epochs = args.Epochs
is_training =args.is_training
dirname_train = args.dirname_train
dirname_test = args.dirname_test
if is_training:
X_train,Y_train = load_train(image_size = image_size,stride = stride,scale = scale,dirname =dirname_train)
srcnn = SRCNN( image_size = image_size, learning_rate=learning_rate)
optimizer = Adam(lr = learning_rate)
srcnn.compile(optimizer=optimizer, loss='mean_squared_error')
history = srcnn.fit(X_train, Y_train, batch_size=batch_size, epochs=epochs, verbose=2,validation_split = 0.1 )
draw_loss_plot(history = history)
#Saving trained model_weights in the current workspace .
#make a folder named srcnn in your current workspace you are working in.In that folder your weights will be stored.
json_string = srcnn.to_json()
open(os.path.join('./srcnn/','srcnn_model.json'),'w').write(json_string)
srcnn.save_weights(os.path.join('./srcnn/','srcnn_weight.hdf5'))
else:
dir_list = os.listdir(dirname_test)
for img in dir_list:
image = cv2.cvtColor(cv2.imread(os.path.join(dirname_test,img)),cv2.COLOR_BGR2GRAY)
image = image[0:image.shape[0]-np.remainder(image.shape[0],scale),0:image.shape[1]-np.remainder(image.shape[1],scale)]
Y_test = image.copy()
X_test = cv2.resize(image, None, fx=1/scale, fy=1/scale)
X_test = cv2.resize(X_test, None, fx= scale/1, fy= scale/1, interpolation=cv2.INTER_CUBIC)
X_test = X_test.reshape(1,X_test.shape[0],X_test.shape[1],1)
weight_filename = 'srcnn_weight.hdf5'
model = SRCNN()
model.compile(optimizer = optimizer,loss = 'mean_squared_error')
model.load_weights(os.path.join('./srcnn/',weight_filename))
Y_pred = model.predict(X_test)
X_test = X_test.reshape(X_test.shape[1],X_test.shape[2])
Y_pred = Y_pred.reshape(Y_pred.shape[1],Y_pred.shape[2])
cv2.imshow(X_test)
cv2.imshow(Y_test)
cv2.imshow(Y_pred)