-
Notifications
You must be signed in to change notification settings - Fork 46
/
preprocess_pretraining.py
57 lines (49 loc) · 2.21 KB
/
preprocess_pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from utils import truncate_tokens_pair,get_random_word
from pytorch_pretrained_bert.tokenization import BertTokenizer
from random import random as rand
from random import randint,shuffle
import random
class PreProcess():
""" Pre-processing steps for pretraining transformer """
def __init__(self, max_pred, mask_prob, max_len):
super().__init__()
self.max_pred = max_pred
self.mask_prob = mask_prob
self.indexer = BertTokenizer.from_pretrained('bert-base-uncased')
self.max_len = max_len
def __call__(self,data):
is_next, tokens_a, tokens_b = data
truncate_tokens_pair(tokens_a, tokens_b, self.max_len - 3)
# Add Special Tokens
tokens = ['[CLS]'] + tokens_a + ['[SEP]'] + tokens_b + ['[SEP]']
segment_ids = [0]*(len(tokens_a)+2) + [1]*(len(tokens_b)+1)
input_mask = [1]*len(tokens)
# For masked Language Models
masked_tokens, masked_pos = [], []
n_pred = min(self.max_pred, max(1, int(round(len(tokens)*self.mask_prob))))
cand_pos = [i for i, token in enumerate(tokens)
if token != '[CLS]' and token != '[SEP]']
shuffle(cand_pos)
for pos in cand_pos[:int(n_pred)]:
masked_tokens.append(tokens[pos])
masked_pos.append(pos)
if rand() < 0.8: # 80%
tokens[pos] = '[MASK]'
elif rand() < 0.5: # 10%
tokens[pos] = get_random_word(self.indexer.vocab)
masked_weights = [1]*len(masked_tokens)
# Token Indexing
input_ids = self.indexer.convert_tokens_to_ids(tokens)
masked_ids = self.indexer.convert_tokens_to_ids(masked_tokens)
# Zero Padding
n_pad = self.max_len - len(input_ids)
input_ids.extend([0]*int(n_pad))
segment_ids.extend([0]*int(n_pad))
input_mask.extend([0]*int(n_pad))
# Zero Padding for masked target
if self.max_pred > n_pred:
n_pad = self.max_pred - n_pred
masked_ids.extend([0]*int(n_pad))
masked_pos.extend([0]*int(n_pad))
masked_weights.extend([0]*int(n_pad))
return (input_ids, segment_ids, input_mask, masked_ids, masked_pos, masked_weights, is_next)