forked from mkondratyev85/raster_tracer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
astar.py
75 lines (59 loc) · 1.86 KB
/
astar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import heapq
class PriorityQueue:
def __init__(self):
self.elements = []
def empty(self):
return len(self.elements) == 0
def put(self, item, priority):
heapq.heappush(self.elements, (priority, item))
def get(self):
return heapq.heappop(self.elements)[1]
def heuristic(a, b):
(x1, y1) = a
(x2, y2) = b
return abs(x1 - x2) + abs(y1 - y2)
def get_neighbors(size_i, size_j, ij):
""" returns possible neighbors of a numpy cell """
i,j = ij
neighbors = set()
if i>0:
neighbors.add((i-1, j))
if j>0:
neighbors.add((i, j-1))
if i<size_i-1:
neighbors.add((i+1, j))
if j<size_j-1:
neighbors.add((i, j+1))
return neighbors
def get_cost(array, current, next):
return array[next]
def find_path(graph, start, goal):
frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}
cost_so_far = {}
came_from[start] = None
cost_so_far[start] = 0
size_i, size_j = graph.shape
while not frontier.empty():
current = frontier.get()
if current == goal:
break
for next in get_neighbors(size_i, size_j, current):
new_cost = cost_so_far[current] + get_cost(graph, current, next)
if next not in cost_so_far or new_cost < cost_so_far[next]:
cost_so_far[next] = new_cost
priority = new_cost + heuristic(goal, next)
frontier.put(next, priority)
came_from[next] = current
path = reconstruct_path(came_from, start, goal)
return path
def reconstruct_path(came_from, start, goal):
current = goal
path = []
while current != start:
path.append(current)
current = came_from[current]
path.append(start) # optional
path.reverse() # optional
return path