-
Notifications
You must be signed in to change notification settings - Fork 3
/
segment_meshes.cpp
862 lines (812 loc) · 36.1 KB
/
segment_meshes.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
/*
* So far tested on Ubuntu 14.04 only
* Based on: http://doc.cgal.org/latest/Surface_mesh_segmentation/index.html
* `...an implementation of the algorithm relying on the Shape Diameter Function [1] (SDF)'
* L. Shapira, A. Shamir, and D. Cohen-Or. Consistent mesh partitioning and skeletonisation using the shape diameter function. The Visual Computer, 24(4):249–259, 2008
*
* Dependencies: If you want to convert from non .OFF files, then this program will require Meshlab Server to be installed
*
* Segments every mesh in an input folder and writes the segmented .OFF files to an output folder
* It is possible to use this program to run a nested loop of using different number of clusters and smoothing parameters
* The program can also use MeshlabServer to convert input meshes to .OFF before segmenting them
* There are two possible usages:
* Segmenting once for each mesh with a given number of clusters (k) and smoothing (lambda) parameters;
* Segmenting many times using different values for k and lambda in a nested loop
*
* Options:
* -i: Followed by the input directory
* -o: Followed by the output directory
* -e: Followed by the input mesh file extension (if not .OFF)
* -k: Followed by the k value (Integer) - integer number of clusters to use (2 <= k <= 9)
* -l: Followed by the lambda value (Real) - float smoothing parameter to use (0.01 <= lambda <= 1)
* -z: Followed by K_START:K_STEP:K_END,LAMBDA_START:LAMBDA_STEP:LAMBDA_END values for runnning many segmentations in a nested loop
* -f: (TO BE IMPLEMENTED) Followed by the minimum number of points of a segment to considered it to be fused with others if too small
* Options -i and -o are the only mandatory ones
* If options -k or -l are not present, then the recommended default value of k=5 and l=0.25 are used
* If option -z is present, options -k and -l are ignored
*
* Example usages:
* segment_meshes -i data -o data_segmented
* This will segment every .OFF file in 'data' once, using the recommended values for k and lambda, and output the segmented .OFF files in 'data_segmented'
* segment_meshes -i data -o data_segmented -k 5 -l 0.25 -e ply
* This will convert every .PLY file in 'data', convert them to .OFF and segment each one once, using k=8 and lambda=0.7, and output the segmented .OFF files in 'data_segmented'
* segment_meshes -i data -o data_segmented -z 3:2:7,0.2:0.1:0.8
* This will segment every .PLY file in 'data' (without converting them - i.e. assuming they are .OFF files already), using k ranging from 2 to 8 in steps of 2, and so on for lambda
*
* By Paulo Abelha (github.com/pauloabelha)
*/
#include <dirent.h>
#include <errno.h>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/boost/graph/graph_traits_Polyhedron_3.h>
#include <CGAL/Polyhedron_items_with_id_3.h>
#include <CGAL/IO/Polyhedron_iostream.h>
#include <CGAL/mesh_segmentation.h>
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Polyhedron_3.h>
#include <CGAL/property_map.h>
#include <iostream>
#include <fstream>
#include <string>
#include <bitset>
#include <ctime>
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef CGAL::Polyhedron_3<K, CGAL::Polyhedron_items_with_id_3> Polyhedron;
typedef K::Point_3 Point_3;
typedef Polyhedron::Vertex_iterator Vertex_iterator;
typedef Polyhedron::Facet_iterator Facet_iterator;
typedef Polyhedron::Halfedge_around_facet_circulator Halfedge_facet_circulator;
// Property map associating a facet with an integer as id to an
// element in a vector stored internally
template<class ValueType>
struct Facet_with_id_pmap
: public boost::put_get_helper<ValueType&,
Facet_with_id_pmap<ValueType> >
{
typedef Polyhedron::Facet_const_handle key_type;
typedef ValueType value_type;
typedef value_type& reference;
typedef boost::lvalue_property_map_tag category;
Facet_with_id_pmap(
std::vector<ValueType>& internal_vector
) : internal_vector(internal_vector) { }
reference operator[](key_type key) const
{ return internal_vector[key->id()]; }
private:
std::vector<ValueType>& internal_vector;
};
// Global variables that are all set by function parse_args
// Option --verbose
//Shows information as the program runs (-v)
bool VERBOSE = 0;
// Option -z ks,ke,ls,le
// Loops for number of clusters (ks to ke) and smoothing values (ls to le)
bool LOOP = 0;
// cluster args
int K_START = 5;
int K_STEP = 1;
int K_END = 5;
// lambda (smoothing) args
float LAMBDA_START = 0.25;
float LAMBDA_STEP = 1;
float LAMBDA_END = 0.25;
// Option -i
// Input file or folder
std::string INPUT_DIR = "";
// Option -o
// Output file or folder
std::string OUTPUT_DIR = "";
// Option -e EXT
// Extension of the input file(s); if differente than .off
// Meshlab is used to convert all files befor erunning the segmentation
std::string INPUT_FILE_EXT = "";
//splits a string (http://www.cplusplus.com/articles/1UqpX9L8/)
// split: receives a char delimiter; returns a vector of strings
// By default ignores repeated delimiters (rep == 0)
void splitstr(std::string str, char delim, std::vector<std::string> & flds) {
std::string buf = "";
int rep = 0;
int i = 0;
while (i < str.length()) {
if (str[i] != delim)
buf += str[i];
else if (rep == 1) {
flds.push_back(buf);
buf = "";
} else if (buf.length() > 0) {
flds.push_back(buf);
buf = "";
}
i++;
}
if (!buf.empty())
flds.push_back(buf);
return;
}
// writes comment-style line for the --help option
void write_comment_line(std::string comment) {
std::cout << "* " << comment << std::endl;
}
// writes usage of program to standard output
void write_usage(void) {
write_comment_line("So far tested on Ubuntu 14.04 only");
write_comment_line("Based on: http://doc.cgal.org/latest/Surface_mesh_segmentation/index.html");
write_comment_line("\t`...an implementation of the algorithm relying on the Shape Diameter Function [1] (SDF)'");
write_comment_line("\tL. Shapira, A. Shamir, and D. Cohen-Or. Consistent mesh partitioning and skeletonisation using the shape diameter function. The Visual Computer, 24(4):249–259, 2008");
write_comment_line("");
write_comment_line("Dependencies: If you want to convert from non .OFF files, then this program will require Meshlab Server to be installed");
write_comment_line("");
write_comment_line("Segments every mesh in an input folder and writes the segmented .OFF files to an output folder");
write_comment_line("It is possible to use this program to run a nested loop of using different number of clusters and smoothing parameters");
write_comment_line("The program can also use MeshlabServer to convert input meshes to .OFF before segmenting them");
write_comment_line("There are two possible usages:");
write_comment_line("\tSegmenting once for each mesh with a given number of clusters (k) and smoothing (lambda) parameters;");
write_comment_line("\tSegmenting many times using different values for k and lambda in a nested loop");
write_comment_line("");
write_comment_line("Options:");
write_comment_line("\t-i: Followed by the input directory");
write_comment_line("\t-o: Followed by the output directory");
write_comment_line("\t-e: Followed by the input mesh file extension (if not .OFF)");
write_comment_line("\t-k: Followed by the k value (Integer) - integer number of clusters to use (2 <= k <= 9)");
write_comment_line("\t-l: Followed by the lambda value (Real) - float smoothing parameter to use (0.01 <= lambda <= 1)");
write_comment_line("\t-z: Followed by K_START:K_STEP:K_END,LAMBDA_START:LAMBDA_STEP:LAMBDA_END values for runnning many segmentations in a nested loop");
write_comment_line("\t-f: (TO BE IMPLEMENTED) Followed by a percentage number ]0, 0.5[ representing the minimum proportional size of a segment (in number of points) above which it is going to be be fused with closest segment neighbours");
write_comment_line("\tOptions -i and -o are the only mandatory ones");
write_comment_line("\tIf options -k or -l are not present, then the recommended default value of k=5 and l=0.25 are used");
write_comment_line("\tIf option -z is present, options -k and -l are ignored");
write_comment_line("");
write_comment_line("Example usages:");
write_comment_line("\tsegment_meshes -i data -o data_segmented");
write_comment_line("\t\tThis will segment every .OFF file in 'data' once, using the recommended values for k and lambda, and output the segmented .OFF files in 'data_segmented'");
write_comment_line("\tsegment_meshes -i data -o data_segmented -k 5 -l 0.25 -e ply");
write_comment_line("\t\tThis will convert every .PLY file in 'data', convert them to .OFF and segment each one once, using k=8 and lambda=0.7, and output the segmented .OFF files in 'data_segmented'");
write_comment_line("\tsegment_meshes -i data -o data_segmented -z 3:2:7,0.2:0.1:0.8");
write_comment_line("\t\tThis will segment every .PLY file in 'data' (without converting them - i.e. assuming they are .OFF files already), using k ranging from 2 to 8 in steps of 2, and so on for lambda");
write_comment_line("");
write_comment_line("By Paulo Abelha (github.com/pauloabelha)");
}
// parse function params
// this function will set all global variables
// see global variables above to know the meaning of each option
int parse_args(int argc, char *argv[]) {
if (argc < 2) {
std::cout << "ERROR: No arguments given" << std::endl;
write_usage();
return 0;
}
if (argc > 10) {
std::cout << "ERROR: There too many arguments passed to the program: " << argc << std::endl;
write_usage();
return 0;
}
int i = 1;
bool is_option_arg = false;
bool is_help_option = false;
bool is_verbose_option = false;
bool loop_option = false;
int n_args = argc - 1;
const int safe_n_iter = 10;
int n_iter = 0;
while (i<=n_args) {
if (n_iter++ > safe_n_iter) {
std::cout << "ERROR: Avoiding infinite loop when parsing arguments (something bad happened):\t" << n_args << std::endl;
write_usage();
return 0;
}
std::string argv_str = std::string(argv[i]);
char first_char = argv[i][0];
is_option_arg = first_char == '-';
is_help_option = argv_str.compare("--help") == 0;
is_verbose_option = argv_str.compare("--verbose") == 0;
// arguments should either come in pairs (option arg) or be --verbose or --help
if (!(is_verbose_option || is_help_option) && !(is_option_arg)) {
std::cout << "ERROR: There is an option without argument (or vice versa):\t" << argv_str << std::endl;
write_usage();
return 0;
}
// parse --help
if (is_help_option) {
write_usage();
return 0;
}
// parse --verbose
if (is_verbose_option) {
VERBOSE = true;
i++;
continue;
}
// parse options
if (is_option_arg) {
// if last argument is an option (shouldn't be), write usage
if ((i+1)>n_args) {
std::cout << "ERROR: Last argument is an option:\t" << argv_str << std::endl;
write_usage();
return 0;
}
// if option argument is an option itself
if (argv[i+1][0] == '-') {
std::cout << "ERROR: Option has another options as argument:\t" << argv_str << " " << argv[i+1] << std::endl;
write_usage();
return 0;
}
// -z (loop option)
if (argv_str.compare("-z") == 0) {
loop_option = true;
std::string loop_argument_str = std::string(argv[i+1]);
std::vector<std::string> loop_args;
splitstr(loop_argument_str, ',', loop_args);
if (loop_args.size() != 2) {
std::cout << "ERROR: Loop option should have one comma separating its two arguments:\t" << loop_argument_str << std::endl;
write_usage();
return 0;
}
// get loop cluster args
std::vector<std::string> cluster_args;
splitstr(loop_args[0], ':', cluster_args);
if (cluster_args.size() != 3) {
std::cout << "ERROR: Loop option for number of clusters (k) should have three values separated by colons:\t" << loop_argument_str << std::endl;
write_usage();
return 0;
}
K_START = std::atoi(cluster_args[0].c_str());
K_STEP = std::atoi(cluster_args[1].c_str());
K_END = std::atoi(cluster_args[2].c_str());
if (K_START < 2) {
std::cout << "ERROR: Initial number of clusters is less than two:\t" << loop_argument_str << std::endl;
write_usage();
return 0;
}
if (K_END < 2) {
std::cout << "ERROR: Final number of clusters is less than two:\t" << loop_argument_str << std::endl;
write_usage();
return 0;
}
if (K_START > K_END) {
std::cout << "ERROR: Initial number of clusters is greater than final number of clusters:\t" << loop_argument_str << std::endl;
write_usage();
return 0;
}
// get loop lambda args
std::vector<std::string> lambda_args;
splitstr(loop_args[1], ':', lambda_args);
if (lambda_args.size() != 3) {
std::cout << "ERROR: Loop option for lambda (smoothing) should have three values separated by colons:\t" << loop_argument_str << std::endl;
write_usage();
return 0;
}
LAMBDA_START = std::atof(lambda_args[0].c_str());
LAMBDA_STEP = std::atof(lambda_args[1].c_str());
LAMBDA_END = std::atof(lambda_args[2].c_str());
if (LAMBDA_START < 0.0099) {
std::cout << "ERROR: Initial lambda is less than 0.01:\t" << loop_argument_str << std::endl;
write_usage();
return 0;
}
if (LAMBDA_STEP < 0.0099) {
std::cout << "ERROR: Lambda step is too small (MIN: 0.01):\t" << loop_argument_str << std::endl;
write_usage();
return 0;
}
if (LAMBDA_END > 1.001) {
std::cout << "ERROR: Final lambda is greater than 1:\t" << loop_argument_str << std::endl;
write_usage();
return 0;
}
if (LAMBDA_START > LAMBDA_END) {
std::cout << "ERROR: Initial lambda is greater than final lambda:\t" << loop_argument_str << std::endl;
write_usage();
return 0;
}
}
else if (argv_str.compare("-k") == 0) {
if(!loop_option) {
K_START = std::atoi(argv[i+1]);
if (K_START < 2) {
std::cout << "ERROR: Given number of clusters is less than two: " << K_START << std::endl;
write_usage();
return 0;
}
K_STEP = 1;
K_END = K_START;
std::cout << K_START << std::endl;
}
}
else if (argv_str.compare("-l") == 0) {
if(!loop_option) {
LAMBDA_START = std::atof(argv[i+1]);
if (LAMBDA_START < 0.0099 || LAMBDA_END > 1.001) {
std::cout << "ERROR: Given lambda is outside allowed interval [0.01, 1]: " << LAMBDA_START << std::endl;
write_usage();
return 0;
}
LAMBDA_STEP = 1;
LAMBDA_END = K_START;
std::cout << LAMBDA_START << std::endl;
}
}
else if ((argv_str.compare("-i") == 0)) {
INPUT_DIR = std::string(argv[i+1]);
if (INPUT_DIR.at(INPUT_DIR.length()-1) != '/')
INPUT_DIR += "/";
}
else if ((argv_str.compare("-o") == 0)) {
OUTPUT_DIR = std::string(argv[i+1]);
if (OUTPUT_DIR.at(OUTPUT_DIR.length()-1) != '/')
OUTPUT_DIR += "/";
}
else if ((argv_str.compare("-e") == 0)) {
INPUT_FILE_EXT = std::string(argv[i+1]);
}
else {
std::cout << "ERROR: Invalid option found: " << argv_str << std::endl;
write_usage();
return 0;
}
// increment to get next option
i += 2;
}
}
if (VERBOSE) {
std::cout << "Arguments parsed (or default) that are going to be going to be used:" << std::endl;
std::string loop_option_str = "No";
if (loop_option)
loop_option_str = "Yes! Loop de loop!";
std::cout << "Looping: " << loop_option_str << std::endl;
std::cout << "K_START: " << K_START << std::endl;
std::cout << "K_STEP: " << K_STEP << std::endl;
std::cout << "K_END: " << K_END << std::endl;
std::cout << "LAMBDA_START: " << LAMBDA_START << std::endl;
std::cout << "LAMBDA_STEP: " << LAMBDA_STEP << std::endl;
std::cout << "LAMBDA_END: " << LAMBDA_END << std::endl;
std::cout << "INPUT_DIR: " << INPUT_DIR << std::endl;
std::cout << "OUTPUT_DIR: " << OUTPUT_DIR << std::endl;
std::cout << "INPUT_FILE_EXT: " << INPUT_FILE_EXT;
if (INPUT_FILE_EXT.empty())
std::cout << "No mesh format conversion required";
std::cout << std::endl << std::endl;
}
if (INPUT_DIR.empty()) {
std::cout << "Input directory cannot be empty. Please give an input directory through option -i" << std::endl;
write_usage();
return 0;
}
if (OUTPUT_DIR.empty()) {
std::cout << "Output directory cannot be empty. Please give an output directory through option -o" << std::endl;
write_usage();
return 0;
}
return 1;
}
// convert a color as an int[3] RGB to a std::string
std::string color_intarray2string(int *color_int) {
std::string color_str = "";
for (int i=0;i<3;i++) {
char int_char_array[4];
snprintf(int_char_array, 4, "%d", color_int[i]);
color_str += std::string(int_char_array) + " ";
}
return color_str;
}
// get a color as RGB in a int[3] array given an index
// color order: red - green - blue - yellow - cyan - magenta - white
// further colors (in order) are darker versions of each above
int* get_color(uint index) {
index++;
std::bitset<3> index_bits = index % 7;
//std::cout << "Index in bits:\t" << index_bits[0] << " " << index_bits[1] << " " << index_bits[2] << std::endl;
int darken_decay_factor = std::floor((double)index/7);
double darken_factor = 1.0/std::pow(2.0,darken_decay_factor);
//std::cout << "Darken decay and full factor:\t" << " " << darken_decay_factor << " " << darken_factor << std::endl;
int *color = new int[3];
for (int i=0;i<3;i++)
color[i] = index_bits[i] * std::floor(darken_factor*255);
//std::cout << "Index color:\t" << color[0] << " " << color[1] << " " << color[2] << std::endl;
return color;
}
// adds a suffix to a filename that has an extension
// e.g. adding suffix "out" to filename "mymesh.off" outputs "mymesh_out.off"
std::string add_suffix_filename(std::string filename, std::string suffix) {
std::string file_shortname = filename.substr(0,filename.length()-4);
std::string file_ext = filename.substr(filename.length()-3,filename.length()-1);
return file_shortname + suffix + "." + file_ext;
}
std::string change_filename_ext(std::string filename, std::string new_ext) {
if (new_ext.empty())
return std::string(filename.substr(0,filename.length()-4));
else
return std::string(filename.substr(0,filename.length()-3)) + new_ext;
}
// get all files in a given directory
// files are any string with lenght > 4 and with a '.' at end - 4
int get_files_in_dir (std::string dir, std::vector<std::string> &files, std::string ext){
DIR *dp;
struct dirent *dirp;
if((dp = opendir(dir.c_str())) == NULL) {
std::cout << "Error (" << errno << ") opening folder: " << dir << std::endl;
return 0;
}
while ((dirp = readdir(dp)) != NULL) {
std::string file_name = std::string(dirp->d_name);
bool file_has_min_lenght = file_name.length() > 4;
if (file_has_min_lenght) {
bool is_a_file = file_name[file_name.length() - 4] == '.';
std::string file_ext = file_name.substr(file_name.length() - 3);
bool file_has_ext = (file_ext.compare(ext) == 0);
if (is_a_file && file_has_ext) {
std::string filename = std::string(dirp->d_name);
files.push_back(filename);
if (VERBOSE) std::cout << filename << std::endl;
}
}
}
closedir(dp);
return 1;
}
std::string get_filepath_from_k_and_lambda(std::string orig_filepath, int k, float lambda) {
//std::string output_filename = mesh_filepath.substr(0,mesh_filepath.length()-4) + "_out.off";
std::string output_filepath = orig_filepath;
char buffer_k [2];
std::sprintf(buffer_k,"%d",k);
std::string k_str = std::string(buffer_k);
char buffer_lambda [4];
int lambda_int = floor(lambda*100);
std::sprintf(buffer_lambda,"%d",lambda_int);
std::string lambda_str = std::string(buffer_lambda);
std::string output_filepath_suffix = "_out_" + k_str + "_" + lambda_str;
output_filepath = add_suffix_filename(output_filepath, output_filepath_suffix);
return output_filepath;
}
// write mesh to an .OFF file
void write_mesh_to_off_file(std::string orig_filepath, Polyhedron mesh, Facet_with_id_pmap<std::size_t> segment_property_map, int n_segms, int k, float lambda) {
// get complete filepath
std::string output_filepath = get_filepath_from_k_and_lambda(orig_filepath, k, lambda);
// get stream output
std::ofstream output(output_filepath.c_str());
if (VERBOSE) std::cout << "Writing to file (" << output_filepath << ")" << std::endl;
// Write polyhedron in Object File Format (OFF) - ASCII
CGAL::set_ascii_mode( output );
// write header
output << "# File generated By Paulo Abelha (github/pauloabelha)" << std::endl;
output << "# Code file: segment_meshes.cpp" << std::endl;
output << "# Using the library CGAL 4.9" << std::endl;
output << "# Based on http://doc.cgal.org/latest/Surface_mesh_segmentation/index.html" << std::endl;
output << "# n_segms " << n_segms << std::endl;
output << "OFF" << std::endl << mesh.size_of_vertices() << ' ' << mesh.size_of_facets() << " 0" << std::endl;
//write points
if (VERBOSE) std::cout << "\tWriting " << mesh.size_of_vertices() << " points..." << std::endl;
std::copy( mesh.points_begin(), mesh.points_end(), std::ostream_iterator<Point_3>( output, "\n"));
// write faces
if (VERBOSE) std::cout << "\tWriting " << mesh.size_of_facets() << " faces..." << std::endl;
for (Facet_iterator i = mesh.facets_begin(); i != mesh.facets_end(); ++i) {
Halfedge_facet_circulator j = i->facet_begin();
// Facets in polyhedral surfaces are at least triangles
CGAL_assertion( CGAL::circulator_size(j) >= 3);
output << CGAL::circulator_size(j) << ' ';
do {
output << ' ' << std::distance(mesh.vertices_begin(), j->vertex());
} while ( ++j != i->facet_begin());
// put color in the face
int *color = get_color(segment_property_map[i]);
std::string color_str = color_intarray2string(color);
output << ' ' << color_str;
output << std::endl;
}
output.close();
if (VERBOSE) std::cout << "OK" << std::endl;
}
// return the segm ID for each vertex from the segm ID for each face
// we count, for each vertex, the number of times a given segm ID is given to each face to each it belongs
// the s of each vertex is then the one that happens the most
std::vector<int> get_vertices_segm_ids(Polyhedron mesh, Facet_with_id_pmap<std::size_t> segment_property_map, int n_segms) {
// matrix V x S, V is number of vertices and S is number of segments
// it holds for each segment, the number of times it has appeared in a face with the given segm ID
std::vector< std::vector<int> > vertex_segm_ids(mesh.size_of_vertices(), std::vector<int>(n_segms));
// run through faces and fill the matrix
for (Facet_iterator i = mesh.facets_begin(); i != mesh.facets_end(); ++i) {
Halfedge_facet_circulator j = i->facet_begin();
// Facets in polyhedral surfaces are at least triangles
CGAL_assertion( CGAL::circulator_size(j) >= 3);
do {
int vertex_ix = std::distance(mesh.vertices_begin(), j->vertex());
vertex_segm_ids[vertex_ix][segment_property_map[i]]++;
} while ( ++j != i->facet_begin());
}
std::vector<int> vertices_segm_ids(mesh.size_of_vertices());
for (int i=0; i<=mesh.size_of_vertices()-1; i++) {
int max = -1;
for (int j = 0; j<=n_segms - 1; j++) {
if (vertex_segm_ids[i][j] > max) {
vertices_segm_ids[i] = j;
max = vertex_segm_ids[i][j];
}
}
}
return vertices_segm_ids;
}
// write a ply header
void write_ply_header(std::ofstream & output, int n_segms, int n_points, int n_faces) {
output << "ply" << std::endl;
output << "format ascii 1.0" << std::endl;
output << "comment File generated By Paulo Abelha (github/pauloabelha)" << std::endl;
output << "comment Code file: segment_meshes.cpp" << std::endl;
output << "comment Using the library CGAL 4.9" << std::endl;
output << "comment Based on http://doc.cgal.org/latest/Surface_mesh_segmentation/index.html" << std::endl;
output << "comment n_segms " << n_segms << std::endl;
output << "element vertex " << n_points << std::endl;
output << "property float x" << std::endl;
output << "property float y" << std::endl;
output << "property float z" << std::endl;
output << "property int segm" << std::endl;
output << "property uchar red" << std::endl;
output << "property uchar green" << std::endl;
output << "property uchar blue" << std::endl;
output << "element face " << n_faces << std::endl;
output << "property list uchar int vertex_indices" << std::endl;
output << "end_header" << std::endl;
}
// write mesh to an .PLY file
void write_mesh_to_ply_file(std::string orig_filepath, Polyhedron mesh, Facet_with_id_pmap<std::size_t> segment_property_map, int n_segms, int k, float lambda) {
// get complete filepath
std::string output_filepath = get_filepath_from_k_and_lambda(orig_filepath, k, lambda);
// change file extension to .PLY
output_filepath = change_filename_ext(output_filepath, "ply");
// get stream output
std::ofstream output(output_filepath.c_str());
if (VERBOSE) std::cout << "Writing to file (" << output_filepath << ")" << std::endl;
// Write polyhedron in Object File Format (OFF) - ASCII
CGAL::set_ascii_mode( output );
// write header
write_ply_header(output, n_segms, mesh.size_of_vertices(), mesh.size_of_facets());
//write points
if (VERBOSE) std::cout << "\tCalculating vertices colors from face colors for " << mesh.size_of_vertices() << " points and " << mesh.size_of_facets() << " faces..." << std::endl;
std::vector<int> vertices_segm_ids = get_vertices_segm_ids(mesh, segment_property_map, n_segms);
int vertex_ix = 0;
if (VERBOSE) std::cout << "\tWriting " << mesh.size_of_vertices() << " points..." << std::endl;
for ( Vertex_iterator v = mesh.vertices_begin(); v != mesh.vertices_end(); ++v) {
int vertex_segm_id = vertices_segm_ids[vertex_ix];
int *color = get_color(vertex_segm_id);
std::string color_str = color_intarray2string(color);
output << v->point() << " " << vertex_segm_id << " " << color_str << std::endl;
vertex_ix++;
}
// write faces
if (VERBOSE) std::cout << "\tWriting " << mesh.size_of_facets() << " faces..." << std::endl;
for (Facet_iterator i = mesh.facets_begin(); i != mesh.facets_end(); ++i) {
Halfedge_facet_circulator j = i->facet_begin();
// Facets in polyhedral surfaces are at least triangles
CGAL_assertion( CGAL::circulator_size(j) >= 3);
output << CGAL::circulator_size(j);
do {
output << ' ' << std::distance(mesh.vertices_begin(), j->vertex());
} while ( ++j != i->facet_begin());
output << std::endl;
}
output.close();
if (VERBOSE) std::cout << "Done" << std::endl;
}
// create and read mesh as a Polyhedron (defined through typedef above)
int get_mesh_from_off_file(std::string mesh_filepath, Polyhedron & mesh) {
if (VERBOSE) std::cout << "Reading mesh file (" << mesh_filepath << ") as a Polyhedron...";
std::ifstream input(mesh_filepath.c_str());
if ( !input ) {
if (VERBOSE) std::cout << std::endl;
std::cout << "ERROR: Could not read stream from file - going to next mesh" << std::endl << std::endl;
return 0;
}
if ( !(input >> mesh)) {
if (VERBOSE) std::cout << std::endl;
std::cout << "ERROR: The .off file is invalid - going to next mesh" << std::endl << std::endl;
return 0;
}
if ( mesh.empty() ) {
if (VERBOSE) std::cout << std::endl;
std::cout << "ERROR: Created Polyhedron is empty - going to next mesh" << std::endl << std::endl;
return 0;
}
if (VERBOSE) std::cout << "OK" << std::endl;
if (VERBOSE) std::cout << "Mesh has " << mesh.size_of_facets() << " faces" << std::endl;
}
int convert_meshes(std::string exec_fullpath, std::string working_dir, std::string OUTPUT_DIR, std::vector<std::string> meshes_filenames, std::string ext_out) {
for(std::vector<std::string>::iterator it = meshes_filenames.begin(); it != meshes_filenames.end(); ++it) {
std::string mesh_filepath_in = working_dir + *it;
std::string mesh_filepath_out = OUTPUT_DIR + *it;
std::string meshlab_script_name = "make_cgal_friendly.mlx";
std::string meshlabserver_command =
"meshlabserver -i " + mesh_filepath_in +
" -o " + change_filename_ext(mesh_filepath_out,ext_out) +
" -s " + exec_fullpath + meshlab_script_name +
" -om vn vf fn ff";
if (system(NULL))
system(meshlabserver_command.c_str());
else {
std::cout << "ERROR: Could not get a shell to run MeshlabServer application" << std::endl;
return 0;
}
if (VERBOSE) std::cout << "Meshlabserver command: " << meshlabserver_command << std::endl;
}
return 1;
}
// convert meshes in a given directory
int convert_meshes_in_dir(std::string exec_fullpath, std::string & INPUT_DIR, std::string OUTPUT_DIR, std::string INPUT_FILE_EXT) {
if (!INPUT_FILE_EXT.empty()) {
// get the meshes filenames to convert to .OFF
std::vector<std::string> meshes_filenames_to_convert = std::vector<std::string>();
if (VERBOSE) std::cout << "Reading file names from directory " << INPUT_DIR << std::endl;
if(!get_files_in_dir(INPUT_DIR, meshes_filenames_to_convert, INPUT_FILE_EXT))
return 0;
// convert meshes to .OFF
if (VERBOSE) std::cout << "Converting meshes in " << INPUT_DIR << " and saving them in " << OUTPUT_DIR << std::endl;
if (!convert_meshes(exec_fullpath, INPUT_DIR, OUTPUT_DIR, meshes_filenames_to_convert, "off")) {
std::cout << "ERROR: Could not convert meshes" << std::endl;
return 0;
}
if (VERBOSE) std::cout << std::endl;
INPUT_DIR = OUTPUT_DIR;
}
return 1;
}
int get_meshes_filenames(std::string INPUT_DIR, std::vector<std::string> & meshes_filenames, bool sorted = false) {
meshes_filenames = std::vector<std::string>();
if(!get_files_in_dir(INPUT_DIR, meshes_filenames, "off"))
return 0;
if (VERBOSE) std::cout << std::endl;
if (meshes_filenames.size() == 0) {
std::cout << meshes_filenames.size() << " .OFF files found in directory: " << INPUT_DIR << std::endl;
std::cout << "Segmentation requires .OFF files. Please add the extension you are using. For .PLY add: -e ply" << std::endl;
return 0;
}
if (sorted)
std::sort(meshes_filenames.begin(), meshes_filenames.end());
return 1;
}
double sesc2HHMM(double secs, double & minutes, double & hours, int round) {
hours = std::floor(secs/3600);
minutes = ((int)secs % 3600)/60;
double round_factor = std::pow(10,round);
minutes = floorf( (minutes*round_factor)/round_factor );
}
void DisplayEstimatedTimeOfLoop( double tot_toc, int curr_ix, int tot_iter, std::string prefix ) {
double minutes = 0;
double hours = 0;
if (curr_ix == tot_iter) {
sesc2HHMM(tot_toc, minutes, hours, 2);
std::cout << prefix << "Total elapsed time (HH:MM): " << hours << ":" << minutes << std::endl;
}
else {
double avg_toc = tot_toc/curr_ix;
sesc2HHMM(avg_toc*(tot_iter-curr_ix), minutes, hours, 2);
std::cout << prefix << "Estimated time (HH:MM): " << hours << ":" << minutes << " " << std::floor(curr_ix*100/tot_iter) << "%" << std::endl;
}
}
// get full path to folder where the executable is running
// https://www.linuxquestions.org/questions/programming-9/get-full-path-of-a-command-in-c-117965/
std::string GetFullPathWhereProgramRuns() {
const int MAXPATHLEN = 200; /* make this larger if you need to. */
int length;
char fullpath[MAXPATHLEN];
/* /proc/self is a symbolic link to the process-ID subdir
* of /proc, e.g. /proc/4323 when the pid of the process
* of this program is 4323.
*
* Inside /proc/<pid> there is a symbolic link to the
* executable that is running as this <pid>. This symbolic
* link is called "exe".
*
* So if we read the path where the symlink /proc/self/exe
* points to we have the full path of the executable.
*/
length = readlink("/proc/self/exe", fullpath, sizeof(fullpath));
/* Catch some errors: */
if (length < 0) {
fprintf(stderr, "Error resolving symlink /proc/self/exe.\n");
exit(EXIT_FAILURE);
}
if (length >= MAXPATHLEN) {
fprintf(stderr, "Path too long. Truncated.\n");
exit(EXIT_FAILURE);
}
/* I don't know why, but the string this readlink() function
* returns is appended with a '@'.
*/
fullpath[length] = '\0'; /* Strip '@' off the end. */
std::string fullpath_str = fullpath;
fullpath_str = fullpath_str.substr(0,fullpath_str.size()-14);
return fullpath_str;;
}
// segment every mesh in a given directory
int main(int argc, char *argv[]){
// parse args
if (!parse_args(argc, argv))
return 0;
// get full path to folder where the executable is running
std::string exec_fullpath = GetFullPathWhereProgramRuns();
// make output directory
if (VERBOSE) std::cout << "Creating directory " << OUTPUT_DIR << std::endl;
std::string command_mkdir = "mkdir " + OUTPUT_DIR;
system(command_mkdir.c_str());
// convert meshes if necessary
if(!convert_meshes_in_dir(exec_fullpath, INPUT_DIR, OUTPUT_DIR, INPUT_FILE_EXT))
return 0;
//get meshes filenames
std::vector<std::string> meshes_filenames;
if(!get_meshes_filenames(INPUT_DIR, meshes_filenames))
return 0;
// run through each mesh in INPUT_DIR (getting SDF values only once)
// run through k number of clusters
// run through smoothing lambdas
// segment and write .OFF file
double tot_toc = 0;
int curr_ix = 0;
int n_pcls = meshes_filenames.size();
for(std::vector<std::string>::iterator it = meshes_filenames.begin(); it != meshes_filenames.end(); ++it) {
// variables to measure time elapsed
curr_ix++;
std::clock_t tic = std::clock();
// get filepath to write to
std::string mesh_filename = *it;
std::string mesh_filepath = INPUT_DIR + mesh_filename;
// get mesh from .OFF file
// if there is a problem continue the loop for next mesh
Polyhedron mesh;
if(!get_mesh_from_off_file(mesh_filepath, mesh))
continue;
// assign id field for each face
if (VERBOSE) std::cout << "Assigning a different ID to each face...";
std::size_t facet_id = 0;
for(Polyhedron::Facet_iterator facet_it = mesh.facets_begin(); facet_it != mesh.facets_end(); ++facet_it, ++facet_id)
facet_it->id() = facet_id;
if (VERBOSE) std::cout << "OK" << std::endl;
// create a property-map for SDF values
// to access SDF values with constant-complexity
if (VERBOSE) std::cout << "Creating an index for SDF values to access them with constant-complexity...";
std::vector<double> sdf_values(mesh.size_of_facets());
Facet_with_id_pmap<double> sdf_property_map(sdf_values);
CGAL::sdf_values(mesh, sdf_property_map);
if (VERBOSE) std::cout << "OK" << std::endl;
// create a property-map for segment IDs
// so we can access a face's segment ID with constant-complexity
if (VERBOSE) std::cout << "Creating an index for face segment IDS to access them with constant-complexity...";
std::vector<std::size_t> segment_ids(mesh.size_of_facets());
Facet_with_id_pmap<std::size_t> segment_property_map(segment_ids);
if (VERBOSE) std::cout << "OK" << std::endl;
std::cout << std::endl;
// run through ks and lambdas, segment and write to .OFF file
double tot_toc_per_mesh = 0;
int curr_ix_mesh = 0;
int n_ks_tries = 0;
for (int k=K_START; k <= K_END; k += K_STEP)
n_ks_tries++;
int n_lambda_tries = 0;
for (float lambda=LAMBDA_START; lambda <= LAMBDA_END; lambda += LAMBDA_STEP)
n_lambda_tries++;
for (int k=K_START; k <= K_END; k += K_STEP) {
curr_ix_mesh++;
int curr_ix_lambda = 0;
double tot_toc_per_lambda = 0;
for (float lambda=LAMBDA_START; lambda <= LAMBDA_END; lambda += LAMBDA_STEP) {
curr_ix_lambda++;
// segment the mesh with params k and lambda
if (VERBOSE) std::cout << "Segmenting...";
int n_segms = CGAL::segmentation_from_sdf_values(mesh, sdf_property_map, segment_property_map, k, lambda);
if (VERBOSE) std::cout << "OK" << std::endl << "Number of segments: " << n_segms << std::endl;
// write mesh to .PLY or .OFF file
if (INPUT_FILE_EXT.compare("ply") == 0)
write_mesh_to_ply_file(OUTPUT_DIR + mesh_filename, mesh, segment_property_map, n_segms, k, lambda);
else
write_mesh_to_off_file(OUTPUT_DIR + mesh_filename, mesh, segment_property_map, n_segms, k, lambda);
if (VERBOSE) std::cout << std::endl;
tot_toc_per_lambda += double(std::clock() - tic) / CLOCKS_PER_SEC;
std::cout << std::endl;
DisplayEstimatedTimeOfLoop( tot_toc_per_lambda, curr_ix_lambda, n_lambda_tries, "Loop for each lambda per mesh ");
}
tot_toc_per_mesh += double(std::clock() - tic) / CLOCKS_PER_SEC;
std::cout << std::endl;
DisplayEstimatedTimeOfLoop( tot_toc_per_mesh, curr_ix_mesh, n_ks_tries, "Loop for each K per mesh ");
std::cout << std::endl;
}
tot_toc += double(std::clock() - tic) / CLOCKS_PER_SEC;
std::cout << std::endl;
DisplayEstimatedTimeOfLoop( tot_toc, curr_ix, n_pcls, "Loop for all meshes ");
std::cout << std::endl;
}
}