-
Notifications
You must be signed in to change notification settings - Fork 0
/
nltk_summarization.py
38 lines (30 loc) · 1.29 KB
/
nltk_summarization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import nltk
nltk.download('punkt')
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
import heapq
def nltk_summarizer(raw_text):
stopWords = set(stopwords.words("english"))
word_frequencies = {}
for word in nltk.word_tokenize(raw_text):
if word not in stopWords:
if word not in word_frequencies.keys():
word_frequencies[word] = 1
else:
word_frequencies[word] += 1
maximum_frequency = max(word_frequencies.values())
for word in word_frequencies.keys():
word_frequencies[word] = (word_frequencies[word]/maximum_frequency)
sentence_list = nltk.sent_tokenize(raw_text)
sentence_scores = {}
for sent in sentence_list:
for word in nltk.word_tokenize(sent.lower()):
if word in word_frequencies.keys():
if len(sent.split(' ')) < 30:
if sent not in sentence_scores.keys():
sentence_scores[sent] = word_frequencies[word]
else:
sentence_scores[sent] += word_frequencies[word]
summary_sentences = heapq.nlargest(7, sentence_scores, key=sentence_scores.get)
summary = ' '.join(summary_sentences)
return summary