-
Notifications
You must be signed in to change notification settings - Fork 337
/
setup.py
47 lines (41 loc) · 2.53 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from setuptools import setup, find_packages
# To RELEASE:
#
# $ python3 -m build
# $ twine upload dist/dtreeviz-1.4.0.tar.gz dist/dtreeviz-1.4.0-py3-none-any.whl
extra_xgboost = ['xgboost']
extra_pyspark = ['pyspark']
extra_lightgbm = ['lightgbm']
extra_tensorflow = ['tensorflow_decision_forests']
setup(
name='dtreeviz',
version='2.2.2',
url='https://github.com/parrt/dtreeviz',
license='MIT',
packages=find_packages(),
install_requires=[
'graphviz>=0.9',
'pandas',
'numpy',
'scikit-learn',
'matplotlib',
'colour'
],
extras_require={
'xgboost': extra_xgboost,
'pyspark': extra_pyspark,
'lightgbm': extra_lightgbm,
'tensorflow_decision_forests': extra_tensorflow,
'all': extra_xgboost + extra_pyspark + extra_lightgbm + extra_tensorflow,
'dev': ['pytest']
},
python_requires='>=3.6',
author='Terence Parr, Tudor Lapusan, and Prince Grover',
author_email='[email protected]',
description='''A Python 3 library for sci-kit learn, XGBoost, LightGBM, Spark, and TensorFlow decision tree visualization''',
long_description='''A python library for decision tree visualization and model interpretation. Decision trees are the fundamental building block of [gradient boosting machines](http://explained.ai/gradient-boosting/index.html) and [Random Forests](https://en.wikipedia.org/wiki/Random_forest)(tm), probably the two most popular machine learning models for structured data. Visualizing decision trees is a tremendous aid when learning how these models work and when interpreting models. The visualizations are inspired by an educational animation by [R2D3](http://www.r2d3.us/); [A visual introduction to machine learning](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/). Please see [How to visualize decision trees](http://explained.ai/decision-tree-viz/index.html) for deeper discussion of our decision tree visualization library and the visual design decisions we made.
Currently dtreeviz supports: [scikit-learn](https://scikit-learn.org/stable), [XGBoost](https://xgboost.readthedocs.io/en/latest), [Spark MLlib](https://spark.apache.org/mllib/), [LightGBM](https://lightgbm.readthedocs.io/en/latest/), and [Tensorflow](https://www.tensorflow.org/decision_forests). See [Installation instructions](README.md#Installation).''',
keywords='machine-learning data structures trees visualization',
classifiers=['License :: OSI Approved :: MIT License',
'Intended Audience :: Developers']
)