-
Notifications
You must be signed in to change notification settings - Fork 49
/
buffer.go
716 lines (616 loc) · 18.9 KB
/
buffer.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
package parquet
import (
"log"
"reflect"
"runtime"
"sort"
"sync"
"sync/atomic"
"github.com/parquet-go/parquet-go/internal/debug"
)
// GenericBuffer is similar to a Buffer but uses a type parameter to define the
// Go type representing the schema of rows in the buffer.
//
// See GenericWriter for details about the benefits over the classic Buffer API.
type GenericBuffer[T any] struct {
base Buffer
write bufferFunc[T]
}
// NewGenericBuffer is like NewBuffer but returns a GenericBuffer[T] suited to write
// rows of Go type T.
//
// The type parameter T should be a map, struct, or any. Any other types will
// cause a panic at runtime. Type checking is a lot more effective when the
// generic parameter is a struct type, using map and interface types is somewhat
// similar to using a Writer. If using an interface type for the type parameter,
// then providing a schema at instantiation is required.
//
// If the option list may explicitly declare a schema, it must be compatible
// with the schema generated from T.
func NewGenericBuffer[T any](options ...RowGroupOption) *GenericBuffer[T] {
config, err := NewRowGroupConfig(options...)
if err != nil {
panic(err)
}
t := typeOf[T]()
if config.Schema == nil && t != nil {
config.Schema = schemaOf(dereference(t))
}
if config.Schema == nil {
panic("generic buffer must be instantiated with schema or concrete type.")
}
buf := &GenericBuffer[T]{
base: Buffer{config: config},
}
buf.base.configure(config.Schema)
buf.write = bufferFuncOf[T](t, config.Schema)
return buf
}
func typeOf[T any]() reflect.Type {
var v T
return reflect.TypeOf(v)
}
type bufferFunc[T any] func(*GenericBuffer[T], []T) (int, error)
func bufferFuncOf[T any](t reflect.Type, schema *Schema) bufferFunc[T] {
if t == nil {
return (*GenericBuffer[T]).writeRows
}
switch t.Kind() {
case reflect.Interface, reflect.Map:
return (*GenericBuffer[T]).writeRows
case reflect.Struct:
return makeBufferFunc[T](t, schema)
case reflect.Pointer:
if e := t.Elem(); e.Kind() == reflect.Struct {
return makeBufferFunc[T](t, schema)
}
}
panic("cannot create buffer for values of type " + t.String())
}
func makeBufferFunc[T any](t reflect.Type, schema *Schema) bufferFunc[T] {
writeRows := writeRowsFuncOf(t, schema, nil)
return func(buf *GenericBuffer[T], rows []T) (n int, err error) {
err = writeRows(buf.base.columns, makeArrayOf(rows), columnLevels{})
if err == nil {
n = len(rows)
}
return n, err
}
}
func (buf *GenericBuffer[T]) Size() int64 {
return buf.base.Size()
}
func (buf *GenericBuffer[T]) NumRows() int64 {
return buf.base.NumRows()
}
func (buf *GenericBuffer[T]) ColumnChunks() []ColumnChunk {
return buf.base.ColumnChunks()
}
func (buf *GenericBuffer[T]) ColumnBuffers() []ColumnBuffer {
return buf.base.ColumnBuffers()
}
func (buf *GenericBuffer[T]) SortingColumns() []SortingColumn {
return buf.base.SortingColumns()
}
func (buf *GenericBuffer[T]) Len() int {
return buf.base.Len()
}
func (buf *GenericBuffer[T]) Less(i, j int) bool {
return buf.base.Less(i, j)
}
func (buf *GenericBuffer[T]) Swap(i, j int) {
buf.base.Swap(i, j)
}
func (buf *GenericBuffer[T]) Reset() {
buf.base.Reset()
}
func (buf *GenericBuffer[T]) Write(rows []T) (int, error) {
if len(rows) == 0 {
return 0, nil
}
return buf.write(buf, rows)
}
func (buf *GenericBuffer[T]) WriteRows(rows []Row) (int, error) {
return buf.base.WriteRows(rows)
}
func (buf *GenericBuffer[T]) WriteRowGroup(rowGroup RowGroup) (int64, error) {
return buf.base.WriteRowGroup(rowGroup)
}
func (buf *GenericBuffer[T]) Rows() Rows {
return buf.base.Rows()
}
func (buf *GenericBuffer[T]) Schema() *Schema {
return buf.base.Schema()
}
func (buf *GenericBuffer[T]) writeRows(rows []T) (int, error) {
if cap(buf.base.rowbuf) < len(rows) {
buf.base.rowbuf = make([]Row, len(rows))
} else {
buf.base.rowbuf = buf.base.rowbuf[:len(rows)]
}
defer clearRows(buf.base.rowbuf)
schema := buf.base.Schema()
for i := range rows {
buf.base.rowbuf[i] = schema.Deconstruct(buf.base.rowbuf[i], &rows[i])
}
return buf.base.WriteRows(buf.base.rowbuf)
}
var (
_ RowGroup = (*GenericBuffer[any])(nil)
_ RowGroupWriter = (*GenericBuffer[any])(nil)
_ sort.Interface = (*GenericBuffer[any])(nil)
_ RowGroup = (*GenericBuffer[struct{}])(nil)
_ RowGroupWriter = (*GenericBuffer[struct{}])(nil)
_ sort.Interface = (*GenericBuffer[struct{}])(nil)
_ RowGroup = (*GenericBuffer[map[struct{}]struct{}])(nil)
_ RowGroupWriter = (*GenericBuffer[map[struct{}]struct{}])(nil)
_ sort.Interface = (*GenericBuffer[map[struct{}]struct{}])(nil)
)
// Buffer represents an in-memory group of parquet rows.
//
// The main purpose of the Buffer type is to provide a way to sort rows before
// writing them to a parquet file. Buffer implements sort.Interface as a way
// to support reordering the rows that have been written to it.
type Buffer struct {
config *RowGroupConfig
schema *Schema
rowbuf []Row
colbuf [][]Value
chunks []ColumnChunk
columns []ColumnBuffer
sorted []ColumnBuffer
}
// NewBuffer constructs a new buffer, using the given list of buffer options
// to configure the buffer returned by the function.
//
// The function panics if the buffer configuration is invalid. Programs that
// cannot guarantee the validity of the options passed to NewBuffer should
// construct the buffer configuration independently prior to calling this
// function:
//
// config, err := parquet.NewRowGroupConfig(options...)
// if err != nil {
// // handle the configuration error
// ...
// } else {
// // this call to create a buffer is guaranteed not to panic
// buffer := parquet.NewBuffer(config)
// ...
// }
func NewBuffer(options ...RowGroupOption) *Buffer {
config, err := NewRowGroupConfig(options...)
if err != nil {
panic(err)
}
buf := &Buffer{
config: config,
}
if config.Schema != nil {
buf.configure(config.Schema)
}
return buf
}
func (buf *Buffer) configure(schema *Schema) {
if schema == nil {
return
}
sortingColumns := buf.config.Sorting.SortingColumns
buf.sorted = make([]ColumnBuffer, len(sortingColumns))
forEachLeafColumnOf(schema, func(leaf leafColumn) {
nullOrdering := nullsGoLast
columnIndex := int(leaf.columnIndex)
columnType := leaf.node.Type()
bufferCap := buf.config.ColumnBufferCapacity
dictionary := (Dictionary)(nil)
encoding := encodingOf(leaf.node)
if isDictionaryEncoding(encoding) {
estimatedDictBufferSize := columnType.EstimateSize(bufferCap)
dictBuffer := columnType.NewValues(
make([]byte, 0, estimatedDictBufferSize),
nil,
)
dictionary = columnType.NewDictionary(columnIndex, 0, dictBuffer)
columnType = dictionary.Type()
}
sortingIndex := searchSortingColumn(sortingColumns, leaf.path)
if sortingIndex < len(sortingColumns) && sortingColumns[sortingIndex].NullsFirst() {
nullOrdering = nullsGoFirst
}
column := columnType.NewColumnBuffer(columnIndex, bufferCap)
switch {
case leaf.maxRepetitionLevel > 0:
column = newRepeatedColumnBuffer(column, leaf.maxRepetitionLevel, leaf.maxDefinitionLevel, nullOrdering)
case leaf.maxDefinitionLevel > 0:
column = newOptionalColumnBuffer(column, leaf.maxDefinitionLevel, nullOrdering)
}
buf.columns = append(buf.columns, column)
if sortingIndex < len(sortingColumns) {
if sortingColumns[sortingIndex].Descending() {
column = &reversedColumnBuffer{column}
}
buf.sorted[sortingIndex] = column
}
})
buf.schema = schema
buf.rowbuf = make([]Row, 0, 1)
buf.colbuf = make([][]Value, len(buf.columns))
buf.chunks = make([]ColumnChunk, len(buf.columns))
for i, column := range buf.columns {
buf.chunks[i] = column
}
}
// Size returns the estimated size of the buffer in memory (in bytes).
func (buf *Buffer) Size() int64 {
size := int64(0)
for _, col := range buf.columns {
size += col.Size()
}
return size
}
// NumRows returns the number of rows written to the buffer.
func (buf *Buffer) NumRows() int64 { return int64(buf.Len()) }
// ColumnChunks returns the buffer columns.
func (buf *Buffer) ColumnChunks() []ColumnChunk { return buf.chunks }
// ColumnBuffer returns the buffer columns.
//
// This method is similar to ColumnChunks, but returns a list of ColumnBuffer
// instead of a ColumnChunk values (the latter being read-only); calling
// ColumnBuffers or ColumnChunks with the same index returns the same underlying
// objects, but with different types, which removes the need for making a type
// assertion if the program needed to write directly to the column buffers.
// The presence of the ColumnChunks method is still required to satisfy the
// RowGroup interface.
func (buf *Buffer) ColumnBuffers() []ColumnBuffer { return buf.columns }
// Schema returns the schema of the buffer.
//
// The schema is either configured by passing a Schema in the option list when
// constructing the buffer, or lazily discovered when the first row is written.
func (buf *Buffer) Schema() *Schema { return buf.schema }
// SortingColumns returns the list of columns by which the buffer will be
// sorted.
//
// The sorting order is configured by passing a SortingColumns option when
// constructing the buffer.
func (buf *Buffer) SortingColumns() []SortingColumn { return buf.config.Sorting.SortingColumns }
// Len returns the number of rows written to the buffer.
func (buf *Buffer) Len() int {
if len(buf.columns) == 0 {
return 0
} else {
// All columns have the same number of rows.
return buf.columns[0].Len()
}
}
// Less returns true if row[i] < row[j] in the buffer.
func (buf *Buffer) Less(i, j int) bool {
for _, col := range buf.sorted {
switch {
case col.Less(i, j):
return true
case col.Less(j, i):
return false
}
}
return false
}
// Swap exchanges the rows at indexes i and j.
func (buf *Buffer) Swap(i, j int) {
for _, col := range buf.columns {
col.Swap(i, j)
}
}
// Reset clears the content of the buffer, allowing it to be reused.
func (buf *Buffer) Reset() {
for _, col := range buf.columns {
col.Reset()
}
}
// Write writes a row held in a Go value to the buffer.
func (buf *Buffer) Write(row interface{}) error {
if buf.schema == nil {
buf.configure(SchemaOf(row))
}
buf.rowbuf = buf.rowbuf[:1]
defer clearRows(buf.rowbuf)
buf.rowbuf[0] = buf.schema.Deconstruct(buf.rowbuf[0], row)
_, err := buf.WriteRows(buf.rowbuf)
return err
}
// WriteRows writes parquet rows to the buffer.
func (buf *Buffer) WriteRows(rows []Row) (int, error) {
defer func() {
for i, colbuf := range buf.colbuf {
clearValues(colbuf)
buf.colbuf[i] = colbuf[:0]
}
}()
if buf.schema == nil {
return 0, ErrRowGroupSchemaMissing
}
for _, row := range rows {
for _, value := range row {
columnIndex := value.Column()
buf.colbuf[columnIndex] = append(buf.colbuf[columnIndex], value)
}
}
for columnIndex, values := range buf.colbuf {
if _, err := buf.columns[columnIndex].WriteValues(values); err != nil {
// TODO: an error at this stage will leave the buffer in an invalid
// state since the row was partially written. Applications are not
// expected to continue using the buffer after getting an error,
// maybe we can enforce it?
return 0, err
}
}
return len(rows), nil
}
// WriteRowGroup satisfies the RowGroupWriter interface.
func (buf *Buffer) WriteRowGroup(rowGroup RowGroup) (int64, error) {
rowGroupSchema := rowGroup.Schema()
switch {
case rowGroupSchema == nil:
return 0, ErrRowGroupSchemaMissing
case buf.schema == nil:
buf.configure(rowGroupSchema)
case !nodesAreEqual(buf.schema, rowGroupSchema):
return 0, ErrRowGroupSchemaMismatch
}
if !sortingColumnsHavePrefix(rowGroup.SortingColumns(), buf.SortingColumns()) {
return 0, ErrRowGroupSortingColumnsMismatch
}
n := buf.NumRows()
r := rowGroup.Rows()
defer r.Close()
_, err := CopyRows(bufferWriter{buf}, r)
return buf.NumRows() - n, err
}
// Rows returns a reader exposing the current content of the buffer.
//
// The buffer and the returned reader share memory. Mutating the buffer
// concurrently to reading rows may result in non-deterministic behavior.
func (buf *Buffer) Rows() Rows { return NewRowGroupRowReader(buf, ReadModeSync) }
// bufferWriter is an adapter for Buffer which implements both RowWriter and
// PageWriter to enable optimizations in CopyRows for types that support writing
// rows by copying whole pages instead of calling WriteRow repeatedly.
type bufferWriter struct{ buf *Buffer }
func (w bufferWriter) WriteRows(rows []Row) (int, error) {
return w.buf.WriteRows(rows)
}
func (w bufferWriter) WriteValues(values []Value) (int, error) {
return w.buf.columns[values[0].Column()].WriteValues(values)
}
func (w bufferWriter) WritePage(page Page) (int64, error) {
return CopyValues(w.buf.columns[page.Column()], page.Values())
}
var (
_ RowGroup = (*Buffer)(nil)
_ RowGroupWriter = (*Buffer)(nil)
_ sort.Interface = (*Buffer)(nil)
_ RowWriter = (*bufferWriter)(nil)
_ PageWriter = (*bufferWriter)(nil)
_ ValueWriter = (*bufferWriter)(nil)
)
type buffer struct {
data []byte
refc uintptr
pool *bufferPool
stack []byte
}
func (b *buffer) refCount() int {
return int(atomic.LoadUintptr(&b.refc))
}
func (b *buffer) ref() {
atomic.AddUintptr(&b.refc, +1)
}
func (b *buffer) unref() {
if atomic.AddUintptr(&b.refc, ^uintptr(0)) == 0 {
if b.pool != nil {
b.pool.put(b)
}
}
}
func monitorBufferRelease(b *buffer) {
if rc := b.refCount(); rc != 0 {
log.Printf("PARQUETGODEBUG: buffer garbage collected with non-zero reference count\n%s", string(b.stack))
}
}
type bufferPool struct {
// Buckets are split in two groups for short and large buffers. In the short
// buffer group (below 256KB), the growth rate between each bucket is 2. The
// growth rate changes to 1.5 in the larger buffer group.
//
// Short buffer buckets:
// ---------------------
// 4K, 8K, 16K, 32K, 64K, 128K, 256K
//
// Large buffer buckets:
// ---------------------
// 364K, 546K, 819K ...
//
buckets [bufferPoolBucketCount]sync.Pool
}
func (p *bufferPool) newBuffer(bufferSize, bucketSize int) *buffer {
b := &buffer{
data: make([]byte, bufferSize, bucketSize),
refc: 1,
pool: p,
}
if debug.TRACEBUF > 0 {
b.stack = make([]byte, 4096)
runtime.SetFinalizer(b, monitorBufferRelease)
}
return b
}
// get returns a buffer from the levelled buffer pool. size is used to choose
// the appropriate pool.
func (p *bufferPool) get(bufferSize int) *buffer {
bucketIndex, bucketSize := bufferPoolBucketIndexAndSizeOfGet(bufferSize)
b := (*buffer)(nil)
if bucketIndex >= 0 {
b, _ = p.buckets[bucketIndex].Get().(*buffer)
}
if b == nil {
b = p.newBuffer(bufferSize, bucketSize)
} else {
b.data = b.data[:bufferSize]
b.ref()
}
if debug.TRACEBUF > 0 {
b.stack = b.stack[:runtime.Stack(b.stack[:cap(b.stack)], false)]
}
return b
}
func (p *bufferPool) put(b *buffer) {
if b.pool != p {
panic("BUG: buffer returned to a different pool than the one it was allocated from")
}
if b.refCount() != 0 {
panic("BUG: buffer returned to pool with a non-zero reference count")
}
if bucketIndex, _ := bufferPoolBucketIndexAndSizeOfPut(cap(b.data)); bucketIndex >= 0 {
p.buckets[bucketIndex].Put(b)
}
}
const (
bufferPoolBucketCount = 32
bufferPoolMinSize = 4096
bufferPoolLastShortBucketSize = 262144
)
func bufferPoolNextSize(size int) int {
if size < bufferPoolLastShortBucketSize {
return size * 2
} else {
return size + (size / 2)
}
}
func bufferPoolBucketIndexAndSizeOfGet(size int) (int, int) {
limit := bufferPoolMinSize
for i := 0; i < bufferPoolBucketCount; i++ {
if size <= limit {
return i, limit
}
limit = bufferPoolNextSize(limit)
}
return -1, size
}
func bufferPoolBucketIndexAndSizeOfPut(size int) (int, int) {
// When releasing buffers, some may have a capacity that is not one of the
// bucket sizes (due to the use of append for example). In this case, we
// have to put the buffer is the highest bucket with a size less or equal
// to the buffer capacity.
if limit := bufferPoolMinSize; size >= limit {
for i := 0; i < bufferPoolBucketCount; i++ {
n := bufferPoolNextSize(limit)
if size < n {
return i, limit
}
limit = n
}
}
return -1, size
}
var (
buffers bufferPool
)
type bufferedPage struct {
Page
values *buffer
offsets *buffer
repetitionLevels *buffer
definitionLevels *buffer
}
func newBufferedPage(page Page, values, offsets, definitionLevels, repetitionLevels *buffer) *bufferedPage {
p := &bufferedPage{
Page: page,
values: values,
offsets: offsets,
definitionLevels: definitionLevels,
repetitionLevels: repetitionLevels,
}
bufferRef(values)
bufferRef(offsets)
bufferRef(definitionLevels)
bufferRef(repetitionLevels)
return p
}
func (p *bufferedPage) Slice(i, j int64) Page {
return newBufferedPage(
p.Page.Slice(i, j),
p.values,
p.offsets,
p.definitionLevels,
p.repetitionLevels,
)
}
func (p *bufferedPage) Retain() {
bufferRef(p.values)
bufferRef(p.offsets)
bufferRef(p.definitionLevels)
bufferRef(p.repetitionLevels)
}
func (p *bufferedPage) Release() {
bufferUnref(p.values)
bufferUnref(p.offsets)
bufferUnref(p.definitionLevels)
bufferUnref(p.repetitionLevels)
}
func bufferRef(buf *buffer) {
if buf != nil {
buf.ref()
}
}
func bufferUnref(buf *buffer) {
if buf != nil {
buf.unref()
}
}
// Retain is a helper function to increment the reference counter of pages
// backed by memory which can be granularly managed by the application.
//
// Usage of this function is optional and with Release, is intended to allow
// finer grain memory management in the application. Most programs should be
// able to rely on automated memory management provided by the Go garbage
// collector instead.
//
// The function should be called when a page lifetime is about to be shared
// between multiple goroutines or layers of an application, and the program
// wants to express "sharing ownership" of the page.
//
// Calling this function on pages that do not embed a reference counter does
// nothing.
func Retain(page Page) {
if p, _ := page.(retainable); p != nil {
p.Retain()
}
}
// Release is a helper function to decrement the reference counter of pages
// backed by memory which can be granularly managed by the application.
//
// Usage of this is optional and with Retain, is intended to allow finer grained
// memory management in the application, at the expense of potentially causing
// panics if the page is used after its reference count has reached zero. Most
// programs should be able to rely on automated memory management provided by
// the Go garbage collector instead.
//
// The function should be called to return a page to the internal buffer pool,
// when a goroutine "releases ownership" it acquired either by being the single
// owner (e.g. capturing the return value from a ReadPage call) or having gotten
// shared ownership by calling Retain.
//
// Calling this function on pages that do not embed a reference counter does
// nothing.
func Release(page Page) {
if p, _ := page.(releasable); p != nil {
p.Release()
}
}
type retainable interface {
Retain()
}
type releasable interface {
Release()
}
var (
_ retainable = (*bufferedPage)(nil)
_ releasable = (*bufferedPage)(nil)
)