forked from irecsys/CARSKit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setting.conf
83 lines (70 loc) · 3.84 KB
/
setting.conf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
################################################### Essential Setup #############################################
# dataset: contextual rating data, or raw rating
dataset.ratings.wins=C:\\Users\\irecs\\Desktop\\Data\\music\\ratings.txt
dataset.ratings.lins=/users/yzheng/desktop/data/DePaulMovie/ratings.txt
dataset.social.wins=-1
dataset.social.lins=-1
# options: -columns: (user, item, [rating, [timestamp]]) columns of rating data; -threshold: to binary ratings;
# --time-unit [DAYS, HOURS, MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS, SECONDS]
# if there is already a binary rating data under folder "CARSKit.Workspace" and you do not need data transformation, set negative value to -datatransformation; otherwise, set it as any positive value, e.g., 1
ratings.setup=-threshold -1 -datatransformation 1
# baseline-Avg recommender: GlobalAvg, UserAvg, ItemAvg, UserItemAvg
# baseline-Context average recommender: ContextAvg, ItemContextAvg, UserContextAvg
# baseline-CF recommender: ItemKNN, UserKNN, SlopeOne, PMF, BPMF, BiasedMF, NMF, SVD++
# baseline-Top-N ranking recommender: SLIM, BPR, RankALS, RankSGD, LRMF
# CARS - splitting approaches: UserSplitting, ItemSplitting, UISplitting; algorithm options: e.g., usersplitting -traditional biasedmf -minlength 2
# CARS - independent models: CPTF
# CARS - dependent-dev models: CAMF_CI, CAMF_CU, CAMF_C, CAMF_CUCI, CSLIM_C, CSLIM_CI, CSLIM_CU, CSLIM_CUCI, GCSLIM_CC
# CARS - dependent-sim models: CAMF_ICS, CAMF_LCS, CAMF_MCS, CSLIM_ICS, CSLIM_LCS, CSLIM_MCS, GCSLIM_ICS, GCSLIM_LCS, GCSLIM_MCS
recommender=CAMF_C
# main option: 1. test-set -f test-file-path; 2. cv (cross validation) -k k-folds [-p on, off]
# 3. leave-one-out; 4. given-ratio -r ratio;
# other options: [--rand-seed n] [--test-view all] [--early-stop loss, MAE, RMSE]
# evaluation.setup=cv -k 5 -p on --rand-seed 1 --test-view all --early-stop RMSE
# evaluation.setup=given-ratio -r 0.8
evaluation.setup=cv -k 5 -p on --rand-seed 1 --test-view all
# main option: is ranking prediction
# other options: -ignore NumOfPopularItems
item.ranking=off -topN 10
# main option: is writing out recommendation results; [--fold-data --measures-only --save-model]
output.setup=-folder CARSKit.Workspace -verbose on, off --to-clipboard --to-file results_all.txt
# Guava cache configuration
guava.cache.spec=maximumSize=200,expireAfterAccess=2m
################################################### Model-based Methods ##########################################
num.factors=10
num.max.iter=120
# options: -bold-driver, -decay ratio, -moment value
learn.rate=2e-10 -max -1 -bold-driver
reg.lambda=0.001 -u 0.001 -i 0.001 -b 0.001 -s 0.001 -c 0.001
# probabilistic graphic models
pgm.setup=-alpha 2 -beta 0.5 -burn-in 300 -sample-lag 10 -interval 100
################################################### Memory-based Methods #########################################
# similarity method: PCC, COS, COS-Binary, MSD, CPC, exJaccard; -1 to disable shrinking;
similarity=PCC
num.shrinkage=-1
# neighborhood size; -1 to use as many as possible.
num.neighbors=10
################################################### Method-specific Settings #######################################
AoBPR=-lambda 0.3
BUCM=-gamma 0.5
BHfree=-k 10 -l 10 -gamma 0.2 -sigma 0.01
FISM=-rho 100 -alpha 0.5
Hybrid=-lambda 0.5
LDCC=-ku 20 -kv 19 -au 1 -av 1 -beta 1
PD=-sigma 2.5
PRankD=-alpha 20
RankALS=-sw on
RSTE=-alpha 0.4
SLIM=-l1 1 -l2 5 -k 50
CSLIM_C=-lw1 1 -lw2 5 -lc1 1 -lc2 5 -k 20 -als 0
CSLIM_CUCI=-lw1 1 -lw2 5 -lc1 1 -lc2 5 10 -1 -als 0
CSLIM_CI=-lw1 1 -lw2 5 -lc1 1 -lc2 5 -k 20 -als 0
CSLIM_CU=-lw1 1 -lw2 5 -lc1 1 -lc2 5 -k 10 -als 0
GCSLIM_CC=-lw1 1 -lw2 5 -lc1 1 -lc2 5 -k -1 -als 0
CSLIM_ICS=-lw1 1 -lw2 5 -k -1 -als 0
CSLIM_LCS=-lw1 1 -lw2 5 -k -1 -als 0
CSLIM_MCS=-lw1 1 -lw2 5 -k -1 -als 0
GCSLIM_ICS=-lw1 1 -lw2 5 -k -1 -als 0
GCSLIM_LCS=-lw1 1 -lw2 5 -k -1 -als 0
GCSLIM_MCS=-lw1 1 -lw2 5 -k -1 -als 0
FM=-lw 0.01 -lf 0.02