-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
79 lines (56 loc) · 2.24 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
from torch import nn
class Generator(nn.Module):
def __init__(self, out_channels=3):
super().__init__()
self.down1 = self.conv_block(1, 64, norm=False)
self.down2 = self.conv_block(64, 128)
self.down3 = self.conv_block(128, 256)
self.down4 = self.conv_block(256, 512)
self.up1 = self.conv_block(512, 256, transpose=True)
self.up2 = self.conv_block(512, 128, transpose=True)
self.up3 = self.conv_block(256, 64, transpose=True)
self.final = nn.Sequential(
nn.ConvTranspose2d(128, out_channels, kernel_size=4, stride=2, padding=1),
nn.Tanh()
)
def conv_block(self, in_channels, out_channels, transpose=False, norm=True):
block = nn.Sequential()
if not transpose:
block.append(nn.Conv2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1))
else:
block.append(nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1))
if norm:
block.append(nn.BatchNorm2d(out_channels))
block.append(nn.LeakyReLU(0.2))
return block
def forward(self, x):
d1 = self.down1(x)
d2 = self.down2(d1)
d3 = self.down3(d2)
d4 = self.down4(d3)
u1 = self.up1(d4)
u2 = self.up2(torch.cat([u1, d3], 1))
u3 = self.up3(torch.cat([u2, d2], 1))
return self.final(torch.cat([u3, d1], 1))
class Discriminator(nn.Module):
def __init__(self, out_channels=3):
super().__init__()
self.model = nn.Sequential(
self.conv_block(out_channels+1, 64, norm=False),
self.conv_block(64, 128),
self.conv_block(128, 256),
self.conv_block(256, 512),
nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0),
nn.Sigmoid()
)
def conv_block(self, in_channels, out_channels, norm=True):
block = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1)
)
if norm:
block.append(nn.BatchNorm2d(out_channels))
block.append(nn.LeakyReLU(0.2))
return block
def forward(self, x, y):
return self.model(torch.cat([x, y], 1))