-
Notifications
You must be signed in to change notification settings - Fork 1
/
tcn.py
101 lines (79 loc) · 3.34 KB
/
tcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm
import IPython as IP
class Chomp1d(nn.Module):
def __init__(self, chomp_size):
super(Chomp1d, self).__init__()
# print('Class of Chomp1d')
# IP.embed()
self.chomp_size = chomp_size
def forward(self, x):
# print('Forward of Chomp1d')
# IP.embed()
return x[:, :, :-self.chomp_size].contiguous() #Chop last 'padding#' elements
class TemporalBlock(nn.Module):
def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2):
super(TemporalBlock, self).__init__()
self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size,
stride=stride, padding=padding, dilation=dilation))
# self.chomp1 = Chomp1d(padding)
self.chomp1 = Chomp1d(2)
self.relu1 = nn.ReLU()
self.dropout1 = nn.Dropout(dropout)
self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size,
stride=stride, padding=padding, dilation=dilation))
# self.chomp2 = Chomp1d(padding)
self.chomp2 = Chomp1d(2)
self.relu2 = nn.ReLU()
self.dropout2 = nn.Dropout(dropout)
# print('Temp Block class')
# IP.embed()
# self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1,
# self.conv2, self.chomp2, self.relu2, self.dropout2)
self.net = nn.Sequential(self.conv1, self.relu1, self.dropout1,
self.conv2, self.relu2, self.dropout2)
self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None # Residuals
self.relu = nn.ReLU()
self.init_weights()
def init_weights(self):
self.conv1.weight.data.normal_(0, 0.01)
self.conv2.weight.data.normal_(0, 0.01)
if self.downsample is not None:
self.downsample.weight.data.normal_(0, 0.01)
def forward(self, x):
#
# print('Forward pass of Temporal Block')
# IP.embed()
out = self.net(x)
# a = x
# a = self.conv1(a)
# a = self.chomp1(a)
#
# a = self.relu1(a)
#
# a = self.dropout1(a)
# a = self.conv2(a)
# a = self.chomp2(a)
# a = self.relu2(a)
# a = self.dropout2(a)
res = x if self.downsample is None else self.downsample(x)
return self.relu(out + res)
class TemporalConvNet(nn.Module):
def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):
super(TemporalConvNet, self).__init__()
layers = []
num_levels = len(num_channels)
for i in range(num_levels):
print('i = {}'.format(i))
# dilation_size = 2 ** i
dilation_size = i + 1
in_channels = num_inputs if i == 0 else num_channels[i-1]
out_channels = num_channels[i]
# print('TempConvNet class')
# IP.embed()
layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size,
padding=(kernel_size-4) * dilation_size, dropout=dropout)]
self.network = nn.Sequential(*layers)
def forward(self, x):
return self.network(x)