diff --git a/Schedule-old.md b/Schedule-old.md
new file mode 100644
index 0000000..4e9f804
--- /dev/null
+++ b/Schedule-old.md
@@ -0,0 +1,21 @@
+## Weekly Schedule
+
+Note that all of the readings are accessible from the original repositories I have linked to if you access them from the University (or use VPN into SCS if you are accessing from home).
+
+
+| Week | Date | Topic | Speaker | Readings |
+| :----------------: | :------: | :---- | :---- | :---- |
+| 1 | 1/9 | Introduction to Disaggregated & Heterogeneous Platforms | M. Tamer Özsu | R. Wang et al., [The Case for Shared-Memory Databases with RDMA-Enabled Memory Disaggregation](https://www.vldb.org/pvldb/vol16/p15-wang.pdf), _Proc. VLDB Endowment_, 2022.
I. Blagodurov et al., [The time is ripe for disaggregated systems](https://www.sigarch.org/the-time-is-ripe-for-disaggregated-systems/). Computer Architecture Today – ACM SIGARCH Blog, 2021.
S. Ghandeharizadeh et al., [Disaggregated database management systems](https://doi.org/10.1007/978-3-031-29576-8_3). In _Performance Evaluation and Benchmarking_, 2023.|
+| 2 | 1/16 | Introduction to Graph Processing | M. Tamer Özsu| M. Besta et al., [Demystifying Graph Databases: Analysis and Taxonomy of Data Organization, System Designs, and Graph Queries](https://doi.org/10.1145/3604932), _ACM Comput. Surv._ 56(2): 31:1-31:40, 2024.
M.T. Özsu and P. Valduriez, [Big Data Processing](https://doi.org/10.1007/978-3-030-26253-2_10). In _Principles of Distributed Database Systems_. Springer, 2022. (Focus on Section 10.4)
M.T. Özsu and P. Valduriez, [Big Data Processing](https://doi.org/10.1007/978-3-030-26253-2_10). In _Principles of Distributed Database Systems_. Springer, 2022. (Focus on Section 12.6) |
+| 3 | 1/23 | Networking infrastructure | | R. Recio, [A Tutorial of the RDMA Model](https://www.hpcwire.com/2006/09/15/a_tutorial_of_the_rdma_model-1/), HPC Wire, 2006.
InfiniBand Trade Organization, [Enabling the Modern Data Center – RDMA for the Enterprise](https://www.infinibandta.org/wp-content/uploads/2019/05/IBTA_WhitePaper_May-20-2019.pdf), 2019.
A. Lerner et al., [Databases on modern networks: A decade of research that now comes into practice](https://doi.org/10.14778/3611540.3611579). _Proc. VLDB Endowment_, 16(12):3894–3897, 2023.
9. D. Gouk et al., [Direct access, High-Performance memory disaggregation with DirectCXL](https://www.usenix.org/conference/atc22/presentation/gouk). In _Proc. USENIX 2022 Annual Technical Conf._, pages 287–294, 2022.
+ |
+| 4 | 1/30 | Storage disaggregation | Student 1
Student 2 | A. Verbitski et al., [Amazon Aurora: Design Considerations for High Throughput Cloud-Native Relational Databases](https://doi.org/10.1145/3035918.3056101), In _Proc. ACM SIGMOD Int. Conf. Management of Data_, pages 1041–1052, 2017.
P. Antonopoulos, et al., [Socrates: The New SQL Server in the Cloud](https://dl.acm.org/doi/10.1145/3299869.3314047), In _Proc. ACM SIGMOD Int. Conf. Management of Data_, pages 1743–1756, 2019. |
+| 5 | 2/6 | Storage disaggregation | Student 3
Student 4| W. Cao et al., [PolarFS: An Ultra-low Latency and Failure Resilient Distributed File System for Shared Storage Cloud Database](https://doi.org/10.14778/3229863.3229872), _Proc. VLDB Endowment_, 11(12): 1849-1962, 2018.
M. Vuppalapati et al., [Building An Elastic Query Engine on Disaggregated Storage](https://www.usenix.org/conference/nsdi20/presentation/vuppalapati), In _Proc. 17th USENIX Symp. on Networked Systems Design & Implementation,_ pages 449-462, 2020. |
+| 6 | 2/13 | Storage/Memory disaggregation | Student 5
Student 6 | A. Agiwal et al., [Napa: Powering Scalable Data Warehousing with Robust Query Performance at Google](https://doi.org/10.14778/3476311.3476377), 14(12): 2986-2998, 2021.
Y, Shan et al., [LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation](https://www.usenix.org/conference/osdi18/presentation/shan), In _Proc. 14th USENIX Symp. on Operating System Design and Implementation_, pages 69-87, 2018. |
+| 7 | 2/20 | No class -- Reading week| | |
+| 8 | 2/27 | Memory disaggregation | Student 7
Student 8 | Y. Zhang et al., [Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation](https://doi.org/10.14778/3467861.3467877), _Proc. VLDB Endowment_, 14(10): 1900 - 1912, 2021.
Wei Cao et al., [PolarDB Serverless: A Cloud Native Database for Disaggregated Data Centers](https://doi.org/10.1145/3448016.3457560), In _Proc. ACM SIGMOD Int. Conf. Management of Data_, pages 2477–2489, 2021. |
+| 9 | 3/5 | Memory disaggregation | Student 9
Student 10 | Q. Zhang et al., [Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs](https://doi.org/10.14778/3397230.3397249), _Proc. VLDB Endowment_, 13(9): 1568-1581, 2020.
Q. Zhang et al., [Redy: Remote Dynamic Memory Cache](https://doi.org/10.14778/3503585.3503587), _Proc. VLDB Endowment_, 15(4): 766 - 779, 2022. |
+| 10 | 3/12 | Hardware accelerators | Student 11
Student 12 | C. Lutz et al., [Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects](https://doi.org/10.1145/3318464.3389705), In _Proc. ACM SIGMOD Int. Conf. Management of Data_, pages 1633–1649, 2020.
L. Hu et al., [GAMMA: A Graph Pattern Mining Framework for Large Graphs on GPU](https://ieeexplore.ieee.org/document/10184586), In _IEEE 39th International Conference on Data Engineering_, 2023. |
+| 11 | 3/19 | Hardware accelerators | Student 13
Student 14 | D. Korilija et al, [Farview: Disaggregated Memory with Operator Off-loading for Database Engines](https://www.cidrdb.org/cidr2022/papers/p11-korolija.pdf), In _Proc. 12th Conf. on Innovative Data Syst. Research_, 2022.
23 |
+| 12 | 3/26 | Project presentations | | |
+| 13 | 4/2 | Project presentations | | |
\ No newline at end of file
diff --git a/Schedule.md b/Schedule.md
index b817c93..d2fe237 100644
--- a/Schedule.md
+++ b/Schedule.md
@@ -1,46 +1,149 @@
## Weekly Schedule
-| Week | Date | Topic | Speaker | Readings |
-| :----------------: | :------: | :---- | :---- | :---- |
-| 1 | 1/9 | Introduction to Disaggregated & Heterogeneous Platforms | M. Tamer Özsu | 1, 2, 3 |
-| 2 | 1/16 | Introduction to Graph Processing | M. Tamer Özsu| 4, 5 |
-| 3 | 1/23 | Networking infrastructure | | 6, 7, 8, 9 |
-| 4 | 1/30 | Storage disaggregation | Student 1
Student 2 | 10
11 |
-| 5 | 2/6 | Storage disaggregation | Student 3
Student 4| 12
13 |
-| 6 | 2/13 | Storage/Memory disaggregation | Student 5
Student 6 | 14
15 |
-| 7 | 2/20 | No class -- Reading week| | |
-| 8 | 2/27 | Memory disaggregation | Student 7
Student 8 | 16
17 |
-| 9 | 3/5 | Memory disaggregation | Student 9
Student 10 | 18
19 |
-| 10 | 3/12 | Hardware accelerators | Student 11
Student 12 | 20
21 |
-| 11 | 3/19 | Hardware accelerators | Student 13
Student 14 | 22
23 |
-| 12 | 3/26 | Project presentations | | |
-| 13 | 4/2 | Project presentations | | |
-
-## Readings
-
-Note that all of the following are accessible from the original repositories I have linked to if you access them from the University (or use VPN into SCS if you are accessing from home).
-
-1. R. Wang et al., [The Case for Shared-Memory Databases with RDMA-Enabled Memory Disaggregation](https://www.vldb.org/pvldb/vol16/p15-wang.pdf), _Proc. VLDB Endowment_, 2022
-2. I. Blagodurov et al., [The time is ripe for disaggregated systems](https://www.sigarch.org/the-time-is-ripe-for-disaggregated-systems/). Computer Architecture Today – ACM SIGARCH Blog, 2021.
-3. S. Ghandeharizadeh et al., [Disaggregated database management systems](https://doi.org/10.1007/978-3-031-29576-8_3). In _Performance Evaluation and Benchmarking_, 2023.
-4. M.T. Özsu and P. Valduriez, [Big Data Processing](https://doi.org/10.1007/978-3-030-26253-2_10). In _Principles of Distributed Database Systems_. Springer, 2022. (Focus on Section 10.4)
-5. M.T. Özsu and P. Valduriez, [Big Data Processing](https://doi.org/10.1007/978-3-030-26253-2_10). In _Principles of Distributed Database Systems_. Springer, 2022. (Focus on Section 12.6)
-6. R. Recio, [A Tutorial of the RDMA Model](https://www.hpcwire.com/2006/09/15/a_tutorial_of_the_rdma_model-1/), HPC Wire, 2006.
-7. InfiniBand Trade Organization, [Enabling the Modern Data Center – RDMA for the Enterprise](https://www.infinibandta.org/wp-content/uploads/2019/05/IBTA_WhitePaper_May-20-2019.pdf), 2019.
-8. A. Lerner et al., [Databases on modern networks: A decade of research that now comes into practice](https://doi.org/10.14778/3611540.3611579). _Proc. VLDB Endowment_, 16(12):3894–3897, 2023.
-9. D. Gouk et al., [Direct access, High-Performance memory disaggregation with DirectCXL](https://www.usenix.org/conference/atc22/presentation/gouk). In _Proc. USENIX 2022 Annual Technical Conf._, pages 287–294, 2022.
-10. A. Verbitski et al., [Amazon Aurora: Design Considerations for High Throughput Cloud-Native Relational Databases](https://doi.org/10.1145/3035918.3056101), In _Proc. ACM SIGMOD Int. Conf. Management of Data_, pages 1041–1052, 2017.
-11. P. Antonopoulos, et al., [Socrates: The New SQL Server in the Cloud](https://dl.acm.org/doi/10.1145/3299869.3314047), In _Proc. ACM SIGMOD Int. Conf. Management of Data_, pages 1743–1756, 2019.
-12. W. Cao et al., [PolarFS: An Ultra-low Latency and Failure Resilient Distributed File System for Shared Storage Cloud Database](https://doi.org/10.14778/3229863.3229872), _Proc. VLDB Endowment_, 11(12): 1849-1962, 2018.
-13. M. Vuppalapati et al., [Building An Elastic Query Engine on Disaggregated Storage](https://www.usenix.org/conference/nsdi20/presentation/vuppalapati), In _Proc. 17th USENIX Symp. on Networked Systems Design & Implementation,_ pages 449-462, 2020.
-14. A. Agiwal et al., [Napa: Powering Scalable Data Warehousing with Robust Query Performance at Google](https://doi.org/10.14778/3476311.3476377), 14(12): 2986-2998, 2021
-15. Y, Shan et al., [LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation](https://www.usenix.org/conference/osdi18/presentation/shan), In _Proc. 14th USENIX Symp. on Operating System Design and Implementation_, pages 69-87, 2018.
-16. Y. Zhang et al., [Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation](https://doi.org/10.14778/3467861.3467877), _Proc. VLDB Endowment_, 14(10): 1900 - 1912, 2021.
-17. Wei Cao et al., [PolarDB Serverless: A Cloud Native Database for Disaggregated Data Centers](https://doi.org/10.1145/3448016.3457560), In _Proc. ACM SIGMOD Int. Conf. Management of Data_, pages 2477–2489, 2021.
-18. Q. Zhang et al., [Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs](https://doi.org/10.14778/3397230.3397249), _Proc. VLDB Endowment_, 13(9): 1568-1581, 2020.
-19. Q. Zhang et al., [Redy: Remote Dynamic Memory Cache](https://doi.org/10.14778/3503585.3503587), _Proc. VLDB Endowment_, 15(4): 766 - 779, 2022.
-20. C. Lutz et al., [Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects](https://doi.org/10.1145/3318464.3389705), In _Proc. ACM SIGMOD Int. Conf. Management of Data_, pages 1633–1649, 2020.
-21. L. Hu et al., [GAMMA: A Graph Pattern Mining Framework for Large Graphs on GPU](https://ieeexplore.ieee.org/document/10184586), In _IEEE 39th International Conference on Data Engineering_, 2023.
-22. xxx
-23. xxx
-
+Note that all of the readings are accessible from the original repositories I have linked to if you access them from the University (or use VPN into SCS if you are accessing from home).
+
+
Week | +Date | +Topic | +Speaker | +Readings | +
---|---|---|---|---|
1 | +1/9 | +Introduction to Disaggregated & Heterogeneous Platforms | +M. Tamer Özsu | ++ + * R. Wang et al., [The Case for Shared-Memory Databases with RDMA-Enabled Memory Disaggregation](https://www.vldb.org/pvldb/vol16/p15-wang.pdf), _Proc. VLDB Endowment_, 2022. + * I. Blagodurov et al., [The time is ripe for disaggregated systems](https://www.sigarch.org/the-time-is-ripe-for-disaggregated-systems/). Computer Architecture Today – ACM SIGARCH Blog, 2021. + * Ghandeharizadeh et al., [Disaggregated database management systems](https://doi.org/10.1007/978-3-031-29576-8_3). In _Performance Evaluation and Benchmarking_, 2023. + | + +
2 | +1/16 | +Introduction to Graph Processing | +M. Tamer Özsu | ++ + * M. Besta et al., [Demystifying Graph Databases: Analysis and Taxonomy of Data Organization, System Designs, and Graph Queries](https://doi.org/10.1145/3604932), _ACM Comput. Surv._ 56(2): 31:1-31:40, 2024. + * M.T. Özsu and P. Valduriez, [Big Data Processing](https://doi.org/10.1007/978-3-030-26253-2_10). In _Principles of Distributed Database Systems_. Springer, 2022. (Focus on Section 10.4)-ripe-for-disaggregated-systems/). Computer Architecture Today – ACM SIGARCH Blog, 2021. + * M.T. Özsu and P. Valduriez, [Big Data Processing](https://doi.org/10.1007/978-3-030-26253-2_10). In _Principles of Distributed Database Systems_. Springer, 2022. (Focus on Section 12.6) + | + +
3 | +1/23 | +Networking infrastructure | ++ | + + * R. Recio, [A Tutorial of the RDMA Model](https://www.hpcwire.com/2006/09/15/a_tutorial_of_the_rdma_model-1/), HPC Wire, 2006. + * InfiniBand Trade Organization, [Enabling the Modern Data Center – RDMA for the Enterprise](https://www.infinibandta.org/wp-content/uploads/2019/05/IBTA_WhitePaper_May-20-2019.pdf), 2019. + * A. Lerner et al., [Databases on modern networks: A decade of research that now comes into practice](https://doi.org/10.14778/3611540.3611579). _Proc. VLDB Endowment_, 16(12):3894–3897, 2023. + * D. Gouk et al., [Direct access, High-Performance memory disaggregation with DirectCXL](https://www.usenix.org/conference/atc22/presentation/gouk). In _Proc. USENIX 2022 Annual Technical Conf._, pages 287–294, 2022. + | + +
4 | +1/30 | +Storage disaggregation | +Student 1 Student 2 |
+ + + * A. Verbitski et al., [Amazon Aurora: Design Considerations for High Throughput Cloud-Native Relational Databases](https://doi.org/10.1145/3035918.3056101), In _Proc. ACM SIGMOD Int. Conf. Management of Data_, pages 1041–1052, 2017. + * P. Antonopoulos, et al., [Socrates: The New SQL Server in the Cloud](https://dl.acm.org/doi/10.1145/3299869.3314047), In _Proc. ACM SIGMOD Int. Conf. Management of Data_, pages 1743–1756, 2019. + | + +
5 | +2/6 | +Storage disaggregation | +Student 3 Student 4 |
+ + + * W. Cao et al., [PolarFS: An Ultra-low Latency and Failure Resilient Distributed File System for Shared Storage Cloud Database](https://doi.org/10.14778/3229863.3229872), _Proc. VLDB Endowment_, 11(12): 1849-1962, 2018. + * M. Vuppalapati et al., [Building An Elastic Query Engine on Disaggregated Storage](https://www.usenix.org/conference/nsdi20/presentation/vuppalapati), In _Proc. 17th USENIX Symp. on Networked Systems Design & Implementation,_ pages 449-462, 2020. + | + +
6 | +2/13 | +Storage/Memory disaggregation | +Student 5 Student 6 |
+ + + * A. Agiwal et al., [Napa: Powering Scalable Data Warehousing with Robust Query Performance at Google](https://doi.org/10.14778/3476311.3476377), 14(12): 2986-2998, 2021. + * Y, Shan et al., [LegoOS: A Disseminated, Distributed OS for Hardware Resource Disaggregation](https://www.usenix.org/conference/osdi18/presentation/shan), In _Proc. 14th USENIX Symp. on Operating System Design and Implementation_, pages 69-87, 2018. + | + +
7 | +2/20 | +No class -- Reading Week | ++ | + + |
8 | +2/27 | +/Memory disaggregation | +Student 7 Student 8 |
+ + + * Y. Zhang et al., [Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation](https://doi.org/10.14778/3467861.3467877), _Proc. VLDB Endowment_, 14(10): 1900 - 1912, 2021. + * Wei Cao et al., [PolarDB Serverless: A Cloud Native Database for Disaggregated Data Centers](https://doi.org/10.1145/3448016.3457560), In _Proc. ACM SIGMOD Int. Conf. Management of Data_, pages 2477–2489, 2021. + | + +
9 | +3/5 | +/Memory disaggregation | +Student 9 Student 10 |
+ + + *Q. Zhang et al., [Understanding the Effect of Data Center Resource Disaggregation on Production DBMSs](https://doi.org/10.14778/3397230.3397249), _Proc. VLDB Endowment_, 13(9): 1568-1581, 2020. + * Q. Zhang et al., [Redy: Remote Dynamic Memory Cache](https://doi.org/10.14778/3503585.3503587), _Proc. VLDB Endowment_, 15(4): 766 - 779, 2022. + | + +
10 | +3/12 | +/Hardware accelerators | +Student 11 Student 12 |
+ + + *C. Lutz et al., [Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects](https://doi.org/10.1145/3318464.3389705), In _Proc. ACM SIGMOD Int. Conf. Management of Data_, pages 1633–1649, 2020. + * L. Hu et al., [GAMMA: A Graph Pattern Mining Framework for Large Graphs on GPU](https://ieeexplore.ieee.org/document/10184586), In _IEEE 39th International Conference on Data Engineering_, 2023. + | + +
11 | +3/19 | +/Hardware accelerators | +Student 13 Student 14 |
+ + + *. Korilija et al, [Farview: Disaggregated Memory with Operator Off-loading for Database Engines](https://www.cidrdb.org/cidr2022/papers/p11-korolija.pdf), In _Proc. 12th Conf. on Innovative Data Syst. Research_, 2022. + * One more + | + +
12 | +3/26 | +/Project presentations | ++ | + + |
13 | +4/2 | +/Project presentations | ++ | + + |