-
Notifications
You must be signed in to change notification settings - Fork 0
/
model9.R
209 lines (195 loc) · 8.48 KB
/
model9.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Model 9 ####
# Advice is disconnected from initial decision
parallel <- T
# Agents have direct access to one another's confidence.
ARC <- Sys.info()[[1]] != 'Windows'
if(ARC)
setwd(paste0(getwd(), '/EvoEgoBias'))
if(parallel)
ARC <- T
# Storage path for results
resultsPath <- ifelse(ARC,'results/','results/')
time <- format(Sys.time(), "%F_%H-%M-%S")
resultsPath <- paste0(resultsPath,time)
# Libraries
if(!require('parallel')) {
install.packages(repos="http://cran.r-project.org",'parallel')
library(parallel)
}
if(ARC) {
# sink(paste(resultsPath, 'log.txt'))
print(Sys.info())
# Set up the parallel execution capabilities
nCores <- detectCores()
cl <- makeCluster(nCores)
print(paste('Running in parallel on', nCores, 'cores.'))
reps <- nCores
} else {
reps <- 1
}
# Clear the result storage variables
suppressWarnings(rm('rawdata'))
suppressWarnings(rm('results'))
# Define the function
runModel <- function(spec) {
print(spec)
setwd(spec$wd)
source('evoSim/evoSim/R/evoSim.R')
data <- evoSim(agentCount = spec$agents,
agentDegree = spec$degree,
decisionCount = spec$decisions,
generationCount = 2500,
mutationChance = 0.01,
other = list(sensitivity = spec$sensitivity,
sensitivitySD = spec$sensitivitySD,
startingEgoBias = spec$startingEgoBias,
adviceNoise = spec$adviceNoise,
badAdviceProb = spec$badAdviceProb),
makeAgentFun = function(modelParams, parents = NULL) {
# Inherit egoBias if there's a previous generation and we're not mutating
if(!is.null(parents)) {
if(runif(1) < modelParams$mutationChance) {
# mutate
egoBias <- rnorm(1, parents$egoBias, 0.1)
} else {
egoBias <- parents$egoBias
}
}
else {
# print(paste('novelty',parents$generation))
egoBias <- modelParams$other$startingEgoBias#rnorm(1, .5, 1)
}
sensitivity <- abs(rnorm(1, mean = modelParams$other$sensitivity,
sd = modelParams$other$sensitivitySD))
# Keep egoBias to within [0-1]
egoBias <- clamp(egoBias, maxVal = 1, minVal = 0)
return(data.frame(sensitivity, egoBias))
},
selectParentsFun = function(modelParams, agents, world, ties) {
tmp <- agents[which(agents$generation == world$generation),]
tmp <- tmp[order(tmp$fitness, decreasing = T),]
# drop the worst half of the population
# tmp <- tmp[1:2,]#(floor(nrow(tmp)/2)), ]
# the others get weighted by relative fitness which are transformed to +ve values
tmp$fitness <- tmp$fitness - min(tmp$fitness) + 1
# scale appropriately
while(any(tmp$fitness < 10))
tmp$fitness <- tmp$fitness * 10
# and round off
tmp$fitness <- round(tmp$fitness)
tickets <- vector(length = sum(tmp$fitness)) # each success buys a ticket in the draw
i <- 0
for(a in 1:nrow(tmp)) {
tickets[(i+1):(i+1+tmp$fitness[a])] <- a
i <- i + 1 + tmp$fitness[a]
}
winners <- sample(tickets, modelParams$agentCount, replace = T)
# The winners clone their egocentric discounting
winners <- tmp[winners,'id']
return(winners)
},
getAdviceFun = function(modelParams, agents, world, ties) {
mask <- which(agents$generation == world$generation)
agents$advisor[mask] <- apply(ties, 1, function(x) sample(which(x != 0),1))
# Fetch advice as a vector
n <- length(mask)
agents$advice[mask] <- rnorm(n,
rep(world$state, n),
clamp(agents$sensitivity[agents$advisor[mask]]
+ modelParams$other$adviceNoise,
Inf))
agents$advice[mask & (runif(n) < modelParams$other$badAdviceProb)] <-
world$state + modelParams$other$sensitivity + 3*modelParams$other$sensitivitySD
return(agents)
},
getWorldStateFun = function(modelParams, world) {
return(50)
})
# save results
n <- length(unique(data$agents$generation))
results <- data.frame(generation = unique(data$agents$generation),
modelDuration = rep(data$duration, n),
sensitivity = rep(spec$sensitivity, n),
sensitivitySD = rep(spec$sensitivitySD, n))
# bind in the stats of interest aggregated by the generation
results <- cbind(results,
aggregate(data$agents,
list(data$agents$generation),
mean)[ ,c('fitness',
'degree',
'sensitivity',
'egoBias',
'initialDecision',
'finalDecision')])
rawdata <- data
rawdata$rep <- 1
return(list(rawdata = rawdata, results = results))
}
# Parameter space to explore
specs <- list()
for(x in c(1000))
for(y in c(10))
for(z in c(30))
for(s in c(10,100))
for(sSD in c(10))
for(sEB in c(0.01, 0.99))
for(aN in c(0))
for(bA in c(.1,.1,.5))
specs[[length(specs)+1]] <- list(agents=x,degree=y,decisions=z,
sensitivity=s,sensitivitySD=sSD,
startingEgoBias=sEB,
adviceNoise = aN,
badAdviceProb = bA,
wd = getwd())
# Testing code for debugging parallel stuff
# rm('x','y','z','s','sSD','sEB','aN','bA')
# runModel(specs[[1]])
# Run the models
# make sure the children can see the degree variable
# Run parallel repetitions of the model with these settings
startTime <- Sys.time()
if(!ARC) {
degreeResults <- lapply(specs, runModel)
} else {
print('Executing parallel operations...')
degreeResults <- parLapply(cl, specs, runModel)
}
print('...combining results...')
# Join up results
for(res in degreeResults) {
if(!exists('results'))
results <- res$results
else
results <- rbind(results, res$results)
if(!exists('rawdata'))
rawdata <- list(res$rawdata)
else
rawdata[[length(rawdata)+1]] <- res$rawdata
}
print(paste0('...complete.'))
print(Sys.time() - startTime)
# Cleanup
if(ARC)
stopCluster(cl)
print('Saving data...')
# Save data
write.csv(results, paste(resultsPath, 'results.csv'))
save(rawdata, file = paste(resultsPath, 'rawdata.Rdata'))
# Smaller datafile for stopping me running out of memory during analysis
allAgents <- NULL
for(rd in rawdata) {
rd$agents$agentCount <- rep(rd$model$agentCount,nrow(rd$agents))
rd$agents$agentDegree <- rep(rd$model$agentDegree,nrow(rd$agents))
rd$agents$decisionCount <- rep(rd$model$decisionCount,nrow(rd$agents))
rd$agents$modelDuration <- rep(rd$duration,nrow(rd$agents))
rd$agents$meanSensitivity <- rep(rd$model$other$sensitivity,nrow(rd$agents))
rd$agents$sdSensitivity <- rep(rd$model$other$sensitivitySD,nrow(rd$agents))
rd$agents$startingEgoBias <- rep(rd$model$other$startingEgoBias,nrow(rd$agents))
rd$agents$adviceNoise <- rep(rd$model$other$adviceNoise,nrow(rd$agents))
rd$agents$badAdviceProb <- rep(rd$model$other$badAdviceProb,nrow(rd$agents))
# only take a subset because of memory limitations
allAgents <- rbind(allAgents, rd$agents[rd$agents$generation%%50 == 1
| (rd$agents$generation%%25 == 1 & rd$agents$generation < 250), ])
}
save(allAgents, file = paste(resultsPath, 'rawdata_subset.Rdata'))
print('...complete.')