-
Notifications
You must be signed in to change notification settings - Fork 0
/
model11.R
383 lines (346 loc) · 15.9 KB
/
model11.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# Model 11 ####
#' Models 6-9 established that, for a simple estimation problem, an evolutionary
#' pressure can emerge favouring egocentric bias where advice is communicated
#' noisily (models 6 & 7), made with less sensitivity than initial decisions
#' (model 8), or is occasionally deliberately misleading (model 9).
#' Here we explore whether these findings remain true for a different type of
#' decision, namely a categorical problem. Here the world value is uniformly
#' distributed between 0 and 100 (excluding 50), and values of 0-49 should be
#' categorised as 0 while values of 51-100 should be categorised as 1. Advice
#' comes graded by confidence and is combined with an internal estimate of
#' confidence to arrive at a final categorical decision.
# Libraries
if(!require('parallel')) {
install.packages(repos="http://cran.r-project.org",'parallel')
library(parallel)
}
if(!require('ggplot2')) {
install.packages(repos="http://cran.r-project.org",'ggplot2')
library(ggplot2)
}
style <- theme_light() +
theme(legend.position = 'top',
panel.grid.major.x = element_blank(),
panel.grid.minor = element_blank())
parallel <- T
ARC <- Sys.info()[[1]] != 'Windows'
if(ARC)
setwd(paste0(getwd(), '/EvoEgoBias'))
if(parallel)
ARC <- T
if(ARC) {
print(Sys.info())
# Set up the parallel execution capabilities
nCores <- detectCores()
cl <- makeCluster(nCores)
print(paste('Running in parallel on', nCores, 'cores.'))
reps <- nCores
} else {
reps <- 1
}
# Define the function
runModel <- function(spec) {
print(spec)
setwd(spec$wd)
source('evoSim/evoSim/R/evoSim.R')
data <- evoSim(agentCount = spec$agents,
agentDegree = spec$degree,
decisionCount = spec$decisions,
generationCount = 1000,
mutationChance = 0.01,
other = list(sensitivity = spec$sensitivity,
sensitivitySD = spec$sensitivitySD,
startingEgoBias = spec$startingEgoBias,
adviceNoise = spec$adviceNoise,
manipulation = spec$manipulation,
shortDesc = spec$shortDesc),
makeAgentsFun = function(modelParams, previousGeneration = NULL, parents = NULL) {
# Population size and generation extracted from current population or by
# modelParams$agentCount
if(is.null(previousGeneration)) {
n <- modelParams$agentCount
g <- 0
}
else {
n <- dim(previousGeneration)[1]
g <- previousGeneration$generation[1]
}
g <- g + 1 # increment generation
# mutants and fresh spawns get randomly assigned egoBias
makeAgents.agents <- data.frame(egoBias = rep(modelParams$other$startingEgoBias,
modelParams$agentCount),
sensitivity = abs(rnorm(modelParams$agentCount,
modelParams$other$sensitivity,
modelParams$other$sensitivitySD)),
generation = rep(g, modelParams$agentCount),
adviceNoise = rep(NA, modelParams$agentCount))
# Overwrite the agents' egobias by inheritance from parents where applicable
if(!is.null(parents)) {
makeAgents.agents$egoBias <- previousGeneration$egoBias[parents]
# mutants inherit from a normal distribution
mutants <- runif(modelParams$agentCount) < modelParams$mutationChance
makeAgents.agents$egoBias[mutants] <- rnorm(sum(mutants),
previousGeneration$egoBias[parents[mutants]],
0.1)
}
makeAgents.agents$egoBias <- clamp(makeAgents.agents$egoBias, maxVal = 1, minVal = 0)
# Connect agents together
ties <- modelParams$connectAgents(modelParams, makeAgents.agents)
makeAgents.agents$degree <- sapply(1:nrow(makeAgents.agents), getDegree, ties)
return(list(agents = makeAgents.agents, ties = ties))
},
selectParentsFun = function(modelParams, agents, world, ties) {
tmp <- agents[which(agents$generation == world$generation),]
tmp <- tmp[order(tmp$fitness, decreasing = T),]
# drop the worst half of the population
# tmp <- tmp[1:2,]#(floor(nrow(tmp)/2)), ]
# the others get weighted by relative fitness which are transformed to +ve values
tmp$fitness <- tmp$fitness - min(tmp$fitness) + 1
# scale appropriately
while(any(abs(tmp$fitness) < 10))
tmp$fitness <- tmp$fitness * 10
# and round off
tmp$fitness <- round(tmp$fitness)
tickets <- vector(length = sum(tmp$fitness)) # each success buys a ticket in the draw
i <- 0
for(a in 1:nrow(tmp)) {
tickets[(i+1):(i+1+tmp$fitness[a])] <- a
i <- i + 1 + tmp$fitness[a]
}
winners <- sample(tickets, modelParams$agentCount, replace = T)
# The winners clone their egocentric discounting
winners <- tmp[winners,'genId']
return(winners)
},
getAdviceFun = spec$getAdviceFun,
getWorldStateFun = spec$getWorldStateFun,
getDecisionFun = spec$getDecisionFun,
getFitnessFun = spec$getFitnessFun)
# save results
rawdata <- data
rawdata$rep <- 1
return(list(rawdata = rawdata))
}
# Decision functions - uncapped continuous (default), capped continuous, and discrete ####
uncappedDecisionFun <- function(modelParams, agents, world, ties, initial = F) {
adviceNoise <- ifelse(modelParams$other$manipulation, modelParams$other$adviceNoise, 0)
mask <- which(agents$generation == world$generation)
if(initial) {
# initial decision - look and see
n <- length(mask)
agents$initialDecision[mask] <- rnorm(n,
rep(world$state, n),
clamp(agents$sensitivity[mask],Inf))
} else {
# Final decision - take advice
# Use vector math to do the advice taking
out <- NULL
noise <- rnorm(length(mask), 0, adviceNoise)
agents$adviceNoise[mask] <- noise
out <- (agents$initialDecision[mask] * agents$egoBias[mask]) +
((1-agents$egoBias[mask]) * (agents$advice[mask] + noise))
#out <- clamp(out, 100)
out[is.na(out)] <- agents$initialDecision[mask][is.na(out)]
agents$finalDecision[mask] <- out
}
return(agents)
}
cappedDecisionFun <- function(modelParams, agents, world, ties, initial = F) {
adviceNoise <- ifelse(modelParams$other$manipulation, modelParams$other$adviceNoise, 0)
mask <- which(agents$generation == world$generation)
if(initial) {
# initial decision - look and see
n <- length(mask)
agents$initialDecision[mask] <- rnorm(n,
rep(world$state, n),
clamp(agents$sensitivity[mask],Inf))
} else {
# Final decision - take advice
# Use vector math to do the advice taking
out <- NULL
noise <- rnorm(length(mask), 0, adviceNoise)
agents$adviceNoise[mask] <- noise
out <- (agents$initialDecision[mask] * agents$egoBias[mask]) +
((1-agents$egoBias[mask]) * (clamp(agents$advice[mask], 100) + noise))
out <- clamp(out, 100)
out[is.na(out)] <- agents$initialDecision[mask][is.na(out)]
agents$finalDecision[mask] <- out
}
return(agents)
}
# World state functions - return 50 and return 0-49|51-100 ####
staticWorldStateFun = function(modelParams, world) {
return(50)
}
variedWorldStateFun = function(modelParams, world) {
round(ifelse(runif(1)>.5, runif(1,0,49), runif(1,51,100)))
}
# Fitness functions - continuous (default) or categorical ####
categoricalFitnessFun <- function(modelParams, agents, world, ties) {
mask <- which(agents$generation==world$generation)
# fitness (error) increases by 1 for an incorrect answer
answer <- world$state > 50
answers <- agents$finalDecision[mask] > 50
agents$fitness[mask] <- agents$fitness[mask] - as.numeric(answers!=answer)
return(agents)
}
# Advice functions - there's noisy advice and bad advice ####
noisyAdviceFun <- function(modelParams, agents, world, ties) {
adviceNoise <- ifelse(modelParams$other$manipulation, modelParams$other$adviceNoise, 0)
mask <- which(agents$generation == world$generation)
agents$advisor[mask] <- apply(ties, 1, function(x) sample(which(x != 0),1))
# Fetch advice as a vector
n <- length(mask)
agents$advice[mask] <- rnorm(n,
rep(world$state, n),
clamp(agents$sensitivity[mask][agents$advisor[mask]]
+ adviceNoise,
Inf))
agents$advice[mask] <- clamp(agents$advice[mask], 100)
return(agents)
}
badAdviceFun <- function(modelParams, agents, world, ties) {
badAdviceProb <- ifelse(modelParams$other$manipulation, modelParams$other$adviceNoise/100, 0)
mask <- which(agents$generation == world$generation)
agents$advisor[mask] <- apply(ties, 1, function(x) sample(which(x != 0),1))
# Fetch advice as a vector
n <- length(mask)
agents$advice[mask] <- rnorm(n,
rep(world$state, n),
clamp(agents$sensitivity[mask][agents$advisor[mask]],Inf))
badActors <- mask & (runif(n) < badAdviceProb)
# bad actors give advice as certain in the other direction
agents$advice[badActors] <- ifelse(agents$advice[badActors] < 50,
50+3*modelParams$other$sensitivity,
-(50+3*modelParams$other$sensitivity))
return(agents)
}
for(decisionType in 3) {
for(adviceType in 3) {
# Storage path for results
resultsPath <- ifelse(ARC,'results/','results/')
time <- format(Sys.time(), "%F_%H-%M-%S")
resultsPath <- paste0(resultsPath,'d',decisionType,'a',adviceType,'_',time)
# Clear the result storage variables
suppressWarnings(rm('rawdata'))
# Parameter space to explore
specs <- list()
for(s in c(1, 10))
for(x in c(F, T))
specs[[length(specs)+1]] <- list(agents=1000,degree=10,decisions=30,
sensitivity=s,sensitivitySD=s,
startingEgoBias=.99,
adviceNoise=5,
manipulation=x,
wd = getwd())
if(decisionType == 1) {
for(i in 1:length(specs)) {
specs[[i]]$getWorldStateFun <- staticWorldStateFun
specs[[i]]$getDecisionFun <- uncappedDecisionFun
specs[[i]]$shortDesc <- 'Uncapped decisions'
}
} else if(decisionType == 2) {
for(i in 1:length(specs)) {
specs[[i]]$getWorldStateFun <- staticWorldStateFun
specs[[i]]$getDecisionFun <- cappedDecisionFun
specs[[i]]$shortDesc <- 'Capped decisions'
}
} else {
for(i in 1:length(specs)) {
specs[[i]]$getWorldStateFun <- variedWorldStateFun
specs[[i]]$getDecisionFun <- cappedDecisionFun
specs[[i]]$getFitnessFun <- categoricalFitnessFun
specs[[i]]$shortDesc <- 'Categorical decisions'
}
}
# Noisy advice = advice made with +10sd on error
if(adviceType == 1) {
for(i in 1:length(specs)) {
specs[[i]]$getAdviceFun <- noisyAdviceFun
specs[[i]]$shortDesc <- paste(specs[[i]]$shortDesc, 'with noisy advice')
}
# Bad advice = advice which is 3*mean sensitivity in the opposite direction
} else if(adviceType == 2) {
for(i in 1:length(specs)) {
specs[[i]]$getAdviceFun <- badAdviceFun
specs[[i]]$shortDesc <- paste(specs[[i]]$shortDesc, 'with bad advice')
}
# Noisy communication means noise is added at evalutation time rather than decision time
} else {
for(i in 1:length(specs)) {
# getAdviceFun is NULL
specs[[i]]$shortDesc <- paste(specs[[i]]$shortDesc, 'with noisy communication')
}
}
# Testing code for debugging parallel stuff
# rm('x','y','z','s','sSD','sEB','aN','bA')
# testData <- runModel(specs[[1]])
#specs <- specs[1:24]
# Run the models
# Run parallel repetitions of the model with these settings
startTime <- Sys.time()
if(!ARC) {
degreeResults <- lapply(specs, runModel)
} else {
print('Executing parallel operations...')
degreeResults <- parLapply(cl, specs, runModel)
}
print('...combining results...')
# Join up results
for(res in degreeResults) {
if(!exists('rawdata'))
rawdata <- list(res$rawdata)
else
rawdata[[length(rawdata)+1]] <- res$rawdata
}
print(paste0('...complete.'))
print(Sys.time() - startTime)
print('Estimated data size:')
print(object.size(rawdata), units = 'auto')
print('Saving data...')
# Save data
save(rawdata, file = paste(resultsPath, 'rawdata.Rdata'))
print('...saved rawdata...')
# Smaller datafile for stopping me running out of memory during analysis
allAgents <- NULL
allDecisions <- NULL
for(rd in rawdata) {
rd$agents$agentCount <- rep(rd$model$agentCount,nrow(rd$agents))
rd$agents$agentDegree <- rep(rd$model$agentDegree,nrow(rd$agents))
rd$agents$decisionCount <- rep(rd$model$decisionCount,nrow(rd$agents))
rd$agents$modelDuration <- rep(rd$duration,nrow(rd$agents))
rd$agents$meanSensitivity <- rep(rd$model$other$sensitivity,nrow(rd$agents))
rd$agents$sdSensitivity <- rep(rd$model$other$sensitivitySD,nrow(rd$agents))
rd$agents$startingEgoBias <- rep(rd$model$other$startingEgoBias,nrow(rd$agents))
rd$agents$manipulation <- rep(rd$model$other$manipulation,nrow(rd$agents))
rd$agents$description <- rep(rd$model$other$shortDesc, nrow(rd$agents))
# only take a subset because of memory limitations
# allAgents <- rbind(allAgents, rd$agents)
allAgents <- rbind(allAgents, rd$agents[rd$agents$generation%%50 == 1
| (rd$agents$generation%%25 == 1 & rd$agents$generation < 250), ])
allDecisions <- rbind(allDecisions, rd$decisions[rd$decisions$generation %in% allAgents$generation, ])
}
toSave <- list(allAgents, allDecisions)
save(toSave, file = paste(resultsPath, 'rawdata_subset.Rdata'))
rm('toSave')
print('...saved subset...')
# Plot
ggplot(allAgents,
aes(x=generation, y=egoBias,
colour = manipulation)) +
geom_hline(yintercept = 0.5, linetype = 'dashed') +
stat_summary(geom = 'point', fun.y = mean, size = 3, alpha = 0.25) +
stat_summary(fun.data = mean_cl_boot, fun.args=(conf.int = .99), geom = 'errorbar', size = 1) +
scale_y_continuous(limits = c(0,1)) +
facet_wrap(~meanSensitivity, labeller = label_both) +
labs(title = allAgents$description[1]) +
style
ggsave(paste(resultsPath, 'graph.png'))
print('...saved graph...')
print('...data saved.')
}
}
# Cleanup
if(ARC)
stopCluster(cl)
print('Complete.')