-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
44 lines (35 loc) · 2.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import argparse
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
def load_model_and_tokenizer(model_name):
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
return model, tokenizer
def perform_translation(model, tokenizer, batch_texts):
formatted_batch_texts = [f"{text}" for text in batch_texts]
model_inputs = tokenizer(formatted_batch_texts, return_tensors="pt", padding=True, truncation=True)
translated = model.generate(**model_inputs)
translated_texts = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
return translated_texts
def perform_back_translation(original_texts, original_model, original_tokenizer, back_translation_model, back_translation_tokenizer):
temp_translated_batch = perform_translation(original_model, original_tokenizer, original_texts)
back_translated_batch = perform_translation(back_translation_model, back_translation_tokenizer, temp_translated_batch)
return list(set(original_texts) | set(back_translated_batch))
def main():
parser = argparse.ArgumentParser(description="Perform translation and back-translation with Seq2Seq models.")
parser.add_argument("--model_name", type=str, required=True, help="Model name for tokenizer and model loading.")
parser.add_argument("--back_translation_model_name", type=str, required=True, help="Model name for back translation.")
parser.add_argument("--source_lang", type=str, required=True, help="Source language code.")
parser.add_argument("--target_lang", type=str, required=True, help="Target language code.")
parser.add_argument("--original_texts", nargs="+", required=True, help="Original texts for translation.")
args = parser.parse_args()
# Load models and tokenizer
original_model, original_tokenizer = load_model_and_tokenizer(args.model_name)
back_translation_model, back_translation_tokenizer = load_model_and_tokenizer(args.back_translation_model_name)
# Perform translation
translated_texts = perform_translation(original_model, original_tokenizer, args.original_texts)
print("Translated Texts:", translated_texts)
# Perform back-translation
back_translated_texts = perform_back_translation(args.original_texts, original_model, original_tokenizer, back_translation_model, back_translation_tokenizer)
print("Back-Translated Texts:", back_translated_texts)
if __name__ == "__main__":
main()