forked from owkin/deepdeconv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_pseudobulk_benchmark.py
199 lines (178 loc) · 7.06 KB
/
run_pseudobulk_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
"""Pseudobulk benchmark."""
# %%
import scanpy as sc
from loguru import logger
import warnings
from constants import (
BENCHMARK_DATASET,
SIGNATURE_CHOICE,
BENCHMARK_CELL_TYPE_GROUP,
SAVE_MODEL,
N_GENES,
N_SAMPLES,
GENERATIVE_MODELS,
BASELINES,
)
from benchmark_utils import (
preprocess_scrna,
create_purified_pseudobulk_dataset,
create_uniform_pseudobulk_dataset,
create_dirichlet_pseudobulk_dataset,
fit_scvi,
fit_destvi,
fit_mixupvi,
create_signature,
add_cell_types_grouped,
run_purified_sanity_check,
run_sanity_check,
plot_purified_deconv_results,
plot_deconv_results,
plot_deconv_results_group,
plot_deconv_lineplot,
)
# %% Load scRNAseq dataset
logger.info(f"Loading single-cell dataset: {BENCHMARK_DATASET} ...")
if BENCHMARK_DATASET == "TOY":
raise NotImplementedError(
"For now, the toy dataset cannot be used to run the benchmark because no "
"signature has intersections with its genes, and no train/test split csv exists"
)
# adata = scvi.data.heart_cell_atlas_subsampled()
# preprocess_scrna(adata, keep_genes=1200)
elif BENCHMARK_DATASET == "CTI":
adata = sc.read("/home/owkin/project/cti/cti_adata.h5ad")
preprocess_scrna(adata,
keep_genes=N_GENES,
batch_key="donor_id")
elif BENCHMARK_DATASET == "CTI_RAW":
warnings.warn("The raw data of this adata is on adata.raw.X, but the normalised "
"adata.X will be used here")
adata = sc.read("/home/owkin/data/cross-tissue/omics/raw/local.h5ad")
preprocess_scrna(adata,
keep_genes=N_GENES,
batch_key="donor_id",
)
elif BENCHMARK_DATASET == "CTI_PROCESSED":
# Load processed for speed-up (already filtered, normalised, etc.)
adata = sc.read(f"/home/owkin/data/cti_data/processed/cti_processed_{N_GENES}.h5ad")
# %% load signature
logger.info(f"Loading signature matrix: {SIGNATURE_CHOICE} | {BENCHMARK_CELL_TYPE_GROUP}...")
signature, intersection = create_signature(
adata,
signature_type=SIGNATURE_CHOICE,
)
# %% add cell types groups and split train/test
adata, train_test_index = add_cell_types_grouped(adata, BENCHMARK_CELL_TYPE_GROUP)
adata_train = adata[train_test_index["Train index"]]
adata_test = adata[train_test_index["Test index"]]
# %% Create and train generative models
generative_models = {}
if GENERATIVE_MODELS != []:
adata_train = adata_train.copy()
adata_test = adata_test.copy()
# 1. scVI
if "scVI" in GENERATIVE_MODELS:
logger.info("Fit scVI ...")
model_path = f"project/models/{BENCHMARK_DATASET}_scvi.pkl"
scvi_model = fit_scvi(adata_train,
model_path,
save_model=SAVE_MODEL)
generative_models["scVI"] = scvi_model
# 2. DestVI
if "DestVI" in GENERATIVE_MODELS:
logger.info("Fit DestVI ...")
# DestVI is only used in sanity check 2
# Uniform
# adata_pseudobulk_train_counts, adata_pseudobulk_train_rc, df_proportions_train = create_uniform_pseudobulk_dataset(
# adata_train, n_sample = N_SAMPLES, n_cells = N_CELLS,
# )
# Dirichlet
adata_pseudobulk_train_counts, adata_pseudobulk_train_rc, df_proportions_test = create_dirichlet_pseudobulk_dataset(
adata_train, prior_alphas = None, n_sample = N_SAMPLES,
)
model_path_1 = f"project/models/{BENCHMARK_DATASET}_condscvi.pkl"
model_path_2 = f"project/models/{BENCHMARK_DATASET}_destvi.pkl"
condscvi_model , destvi_model= fit_destvi(adata_train,
adata_pseudobulk_train_counts,
model_path_1,
model_path_2,
cell_type_key="cell_types_grouped",
save_model=SAVE_MODEL)
# generative_models["CondscVI"] = condscvi_model
generative_models["DestVI"] = destvi_model
# 3. MixupVI
if "MixupVI" in GENERATIVE_MODELS:
logger.info("Train mixupVI ...")
model_path = f"project/models/{BENCHMARK_DATASET}_{BENCHMARK_CELL_TYPE_GROUP}_{N_GENES}_mixupvi.pkl"
mixupvi_model = fit_mixupvi(adata_train,
model_path,
cell_type_group="cell_types_grouped",
save_model=SAVE_MODEL,
)
generative_models["MixupVI"] = mixupvi_model
# %% Sanity check 3
#num_cells = [50, 100, 300, 500, 1000]
num_cells = [2000]
results = {}
results_group = {}
for n in num_cells:
logger.info(f"Pseudobulk simulation with {n} sampled cells ...")
all_adata_samples_test, adata_pseudobulk_test_counts, adata_pseudobulk_test_rc, df_proportions_test = create_dirichlet_pseudobulk_dataset(
adata_test,
prior_alphas = None,
n_sample = N_SAMPLES,
n_cells = n,
add_sparsity=False # useless in the current modifications
)
# decomment following for Sanity check 2.
# adata_pseudobulk_test_counts, adata_pseudobulk_test_rc, df_proportions_test = create_uniform_pseudobulk_dataset(
# adata_test,
# n_sample = N_SAMPLES,
# n_cells = n,
# )
df_test_correlations, df_test_group_correlations = run_sanity_check(
adata_train=adata_train,
adata_pseudobulk_test_counts=adata_pseudobulk_test_counts,
adata_pseudobulk_test_rc=adata_pseudobulk_test_rc,
all_adata_samples_test=all_adata_samples_test,
df_proportions_test=df_proportions_test,
signature=signature,
intersection=intersection,
generative_models=generative_models,
baselines=BASELINES,
)
results[n] = df_test_correlations
results_group[n] = df_test_group_correlations
# %% Plots
if len(results) > 1:
plot_deconv_lineplot(results,
save=True,
filename=f"sim_pseudobulk_lineplot")
else:
key = list(results.keys())[0]
plot_deconv_results(results[key],
save=True,
filename=f"sim_pseudobulk_{key}")
plot_deconv_results_group(results_group[key],
save=True,
filename=f"sim_pseudobulk_{key}_per_celltype")
# %% (Optional) Sanity check 1.
# create *purified* train/test pseudobulk datasets
# adata_pseudobulk_test_counts, adata_pseudobulk_test_rc = create_purified_pseudobulk_dataset(adata_test)
# deconv_results = run_purified_sanity_check(
# adata_train=adata_train,
# adata_pseudobulk_test_counts=adata_pseudobulk_test_counts,
# adata_pseudobulk_test_rc=adata_pseudobulk_test_rc,
# signature=signature,
# intersection=intersection,
# generative_models=generative_models,
# baselines=BASELINES,
# )
# # # # %% Plot
# plot_purified_deconv_results(
# deconv_results,
# only_fit_one_baseline=False,
# more_details=False,
# save=True,
# filename="test_sanitycheck_1"
# )