-
Notifications
You must be signed in to change notification settings - Fork 25
/
data-structures.scm
808 lines (700 loc) · 23.1 KB
/
data-structures.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
;;; data-structures.scm - Optional data structures extensions
;
; Copyright (c) 2008-2014, The Chicken Team
; All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions
; are met:
;
; Redistributions of source code must retain the above copyright notice, this list of conditions and the following
; disclaimer.
; Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
; disclaimer in the documentation and/or other materials provided with the distribution.
; Neither the name of the author nor the names of its contributors may be used to endorse or promote
; products derived from this software without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
; OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
; AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
; CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
; CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
; SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
; OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
; POSSIBILITY OF SUCH DAMAGE.
;;; Adapted to Chez Scheme
;;; Copyright (C) 2016 Aldo Nicolas Bruno
(define-syntax d (syntax-rules () ((_ . _) (void))))
(define-syntax define-alias
(syntax-rules ()
((_ new old)
(define-syntax new
(syntax-rules ___ ()
((_ args ___)
(old args ___)))))))
;;; Combinators:
(define (identity x) x)
(define (conjoin . preds)
(lambda (x)
(let loop ([preds preds])
(or (null? preds)
(and ((car preds) x)
(loop (cdr preds)) ) ) ) ) )
(define (disjoin . preds)
(lambda (x)
(let loop ([preds preds])
(and (not (null? preds))
(or ((car preds) x)
(loop (cdr preds)) ) ) ) ) )
(define (constantly . xs)
(if (= 1 (length xs))
(let ([x (car xs)])
(lambda _ x) )
(lambda _ (apply values xs)) ) )
(define (flip proc) (lambda (x y) (proc y x)))
(define complement
(lambda (p)
(lambda args (not (apply p args))) ) )
(define (compose . fns)
(define (rec f0 . fns)
(if (null? fns)
f0
(lambda args
(call-with-values
(lambda () (apply (apply rec fns) args))
f0) ) ) )
(if (null? fns)
values
(apply rec fns) ) )
(define (o . fns)
(if (null? fns)
identity
(let loop ((fns fns))
(let ((h (car fns))
(t (cdr fns)) )
(if (null? t)
h
(lambda (x) (h ((loop t) x))))))))
(define (list-of? pred)
(lambda (lst)
(let loop ([lst lst])
(cond [(null? lst) #t]
[(not (pair? lst)) #f]
[(pred (car lst)) (loop (cdr lst))]
[else #f] ) ) ) )
(define (each . procs)
(cond ((null? procs) (lambda _ (void)))
((null? (cdr procs)) (car procs))
(else
(lambda args
(let loop ((procs procs))
(let ((h (car procs))
(t (cdr procs)) )
(if (null? t)
(apply h args)
(begin
(apply h args)
(loop t) ) ) ) ) ) ) ) )
(define (any? x) #t)
;;; List operators:
(define (tail? x y)
(assert (and 'tail? (list? y)))
(or (null? x)
(let loop ((y y))
(cond ((null? y) #f)
((eq? x y) #t)
(else (loop (cdr y))) ) ) ) )
(define intersperse
(lambda (lst x)
(let loop ((ns lst))
(if (null? ns)
ns
(let ((tail (cdr ns)))
(if (null? tail)
ns
(cons (car ns) (cons x (loop tail))) ) ) ) ) ) )
(define (butlast lst)
(assert (and 'butlast (pair? lst )))
(let loop ((lst lst))
(let ((next (cdr lst )))
(if (pair? next)
(cons (car lst) (loop next))
'() ) ) ) )
(define (flatten . lists0)
(let loop ([lists lists0] [rest '()])
(cond [(null? lists) rest]
[else
(let ([head (car lists)]
[tail (cdr lists)] )
(if (list? head)
(loop head (loop tail rest))
(cons head (loop tail rest)) ) ) ] ) ) )
(define chop
(lambda (lst n)
(assert (and 'chop (exact? n)))
(when (fx<= n 0) (errorf 'chop "invalid numeric argument ~d" n))
(let ([len (length lst)])
(let loop ([lst lst] [i len])
(cond [(null? lst) '()]
[(fx< i n) (list lst)]
[else
(do ([hd '() (cons (car tl) hd)]
[tl lst (cdr tl)]
[c n (fx- c 1)] )
((fx= c 0)
(cons (reverse hd) (loop tl (fx- i n))) ) ) ] ) ) ) ) )
(define (join lsts . lst)
(let ([lst (if (pair? lst) (car lst) '())])
(assert (and 'join (list? lst)))
(let loop ([lsts lsts])
(cond [(null? lsts) '()]
[(not (pair? lsts))
(errorf 'join "not a proper list ~d" lsts) ]
[else
(let ([l (car lsts)]
[r (cdr lsts)] )
(if (null? r)
l
(append l lst (loop r)) ) ) ] ) ) ) )
(define compress
(lambda (blst lst)
(let ([msg "bad argument type - not a proper list"])
(assert (and 'compress (list? lst)))
(let loop ([blst blst] [lst lst])
(cond [(null? blst) '()]
[(not (pair? blst))
(error 'compress msg 'type-error blst) ]
[(not (pair? lst))
(error 'compress msg 'type-error lst) ]
[(car blst)
(cons (car lst) (loop (cdr blst) (cdr lst)))]
[else (loop (cdr blst) (cdr lst))] ) ) ) ) )
;;; Alists:
(define alist-update!
(case-lambda
[(x y lst)
(alist-update! x y lst eqv?)]
[(x y lst cmp)
(let* ([aq (cond [(eq? eq? cmp) assq]
[(eq? eqv? cmp) assv]
[(eq? equal? cmp) assoc]
[else
(lambda (x lst)
(let loop ([lst lst])
(and (pair? lst)
(let ([a (car lst)])
(if (and (pair? a) (cmp (car a) x))
a
(loop (cdr lst)) ) ) ) ) ) ] ) ]
[item (aq x lst)] )
(if item
(begin
(set-cdr! item y)
lst)
(cons (cons x y) lst) ) ) ]))
(define alist-update
(case-lambda
[(k v lst)
(alist-update k v lst eqv?)]
[(k v lst cmp)
(let loop ((lst lst))
(cond ((null? lst)
(list (cons k v)))
((not (pair? lst))
(error 'alist-update "bad argument type" lst))
(else
(let ((a (car lst)))
(cond ((not (pair? a))
(error 'alist-update "bad argument type" a))
((cmp (car a) k)
(cons (cons k v) (cdr lst)))
(else
(cons (cons (car a) (cdr a))
(loop (cdr lst)))))))))]))
(define alist-ref
(case-lambda
[(x lst)
(alist-ref x lst eqv?)]
[(x lst cmp)
(alist-ref x lst cmp #f)]
[(x lst cmp default)
(let* ([aq (cond [(eq? eq? cmp) assq]
[(eq? eqv? cmp) assv]
[(eq? equal? cmp) assoc]
[else
(lambda (x lst)
(let loop ([lst lst])
(and (pair? lst)
(let ([a (car lst )])
(if (and (pair? a) (cmp (car a ) x))
a
(loop (cdr lst )) ) ) ) ) ) ] ) ]
[item (aq x lst)] )
(if item
(cdr item )
default) ) ]))
(define (rassoc x lst . tst)
(assert (and 'rassoc (list? lst)))
(let ([tst (if (pair? tst) (car tst) eqv?)])
(let loop ([l lst])
(and (pair? l)
(let ([a (car l )])
(assert (and 'rassoc (pair? a)))
(if (tst x (cdr a ))
a
(loop (cdr l )) ) ) ) ) ) )
; (reverse-string-append l) = (apply string-append (reverse l))
(define (reverse-string-append l)
(define (rev-string-append l i)
(if (pair? l)
(let* ((str (car l))
(len (string-length str))
(result (rev-string-append (cdr l) (fx+ i len))))
(let loop ((j 0) (k (fx- (fx- (string-length result) i) len)))
(if (fx< j len)
(begin
(string-set! result k (string-ref str j))
(loop (fx+ j 1) (fx+ k 1)))
result)))
(make-string i)))
(rev-string-append l 0))
;;; Anything->string conversion:
(define ->string
(lambda (x)
(cond [(string? x) x]
[(symbol? x) (symbol->string x)]
[(char? x) (string x)]
[(number? x) (number->string x)]
[else
(let ([o (open-output-string)])
(display x o)
(get-output-string o) ) ] ) ) )
(define conc
(lambda args
(apply string-append (map ->string args)) ) )
;;; Concatenate list of strings:
(define (string-intersperse strs ds)
(assert (and 'string-intersperse (list? strs)))
(assert (and 'string-intersperse (string? ds)))
(let ((dslen (string-length ds)))
(let loop1 ((ss strs) (n 0))
(if (null? ss) ""
(string-append (car ss)
(if (null? (cdr ss)) ""
(string-append ds
(loop1 (cdr ss) (+ n 1) ))))))))
(define (string-translate* str smap)
(import (only (srfi s13 strings) string=))
(assert (and 'string-translate* (list? smap)))
(assert (and 'string-translate* (string? str)))
(let ([len (string-length str)])
(define (collect i from total fs)
(if (fx>= i len)
(apply string-append
(reverse
(if (fx> i from)
(cons (substring str from i) fs)
fs) ) )
(let loop ([smap smap])
(if (null? smap)
(collect (fx+ i 1) from (fx+ total 1) fs)
(let* ([p (car smap)]
[sm (car p)]
[smlen (string-length sm)]
[st (cdr p)] )
(if (string= str sm i (min (+ i smlen) len) 0 smlen)
(let ([i2 (fx+ i smlen)])
(when (fx> i from)
(set! fs (cons (substring str from i) fs)) )
(collect
i2 i2
(fx+ total (string-length st))
(cons st fs) ) )
(loop (cdr smap)) ) ) ) ) ) )
(collect 0 0 0 '()) ) )
;;; Chop string into substrings:
(define (string-chop str len)
(assert (and 'string-chop (exact? len)))
(assert (and 'string-chop (string? str)))
(let ([total (string-length str)])
(let loop ([total total] [pos 0])
(cond [(fx<= total 0) '()]
[(fx<= total len) (list (substring str pos (fx+ pos total)))]
[else (cons (substring str pos (fx+ pos len)) (loop (fx- total len) (fx+ pos len)))] ) ) ) )
;;; Defines: sorted?, merge, merge!, sort, sort!
;;; Author : Richard A. O'Keefe (based on Prolog code by D.H.D.Warren)
;;;
;;; This code is in the public domain.
;;; Updated: 11 June 1991
;;; Modified for scheme library: Aubrey Jaffer 19 Sept. 1991
;;; Updated: 19 June 1995
;;; (sorted? sequence less?)
;;; is true when sequence is a list (x0 x1 ... xm) or a vector #(x0 ... xm)
;;; such that for all 1 <= i <= m,
;;; (not (less? (list-ref list i) (list-ref list (- i 1)))).
; Modified by flw for use with CHICKEN:
;
(define (sorted? seq less?)
(cond
((null? seq)
#t)
((vector? seq)
(let ((n (vector-length seq)))
(if (<= n 1)
#t
(do ((i 1 (+ i 1)))
((or (= i n)
(less? (vector-ref seq i)
(vector-ref seq (- i 1))))
(= i n)) )) ))
(else
(let loop ((last (car seq)) (next (cdr seq)))
(or (null? next)
(and (not (less? (car next) last))
(loop (car next) (cdr next)) )) )) ))
;;; THESE ARE ALREADY IN CHEZ SCHEME
;; ;;; (merge a b less?)
;; ;;; takes two lists a and b such that (sorted? a less?) and (sorted? b less?)
;; ;;; and returns a new list in which the elements of a and b have been stably
;; ;;; interleaved so that (sorted? (merge a b less?) less?).
;; ;;; Note: this does _not_ accept vectors. See below.
;; (define (merge a b less?)
;; (cond
;; ((null? a) b)
;; ((null? b) a)
;; (else (let loop ((x (car a)) (a (cdr a)) (y (car b)) (b (cdr b)))
;; ;; The loop handles the merging of non-empty lists. It has
;; ;; been written this way to save testing and car/cdring.
;; (if (less? y x)
;; (if (null? b)
;; (cons y (cons x a))
;; (cons y (loop x a (car b) (cdr b)) ))
;; ;; x <= y
;; (if (null? a)
;; (cons x (cons y b))
;; (cons x (loop (car a) (cdr a) y b)) )) )) ))
;; ;;; (merge! a b less?)
;; ;;; takes two sorted lists a and b and smashes their cdr fields to form a
;; ;;; single sorted list including the elements of both.
;; ;;; Note: this does _not_ accept vectors.
;; (define (merge! a b less?)
;; (define (loop r a b)
;; (if (less? (car b) (car a))
;; (begin
;; (set-cdr! r b)
;; (if (null? (cdr b))
;; (set-cdr! b a)
;; (loop b a (cdr b)) ))
;; ;; (car a) <= (car b)
;; (begin
;; (set-cdr! r a)
;; (if (null? (cdr a))
;; (set-cdr! a b)
;; (loop a (cdr a) b)) )) )
;; (cond
;; ((null? a) b)
;; ((null? b) a)
;; ((less? (car b) (car a))
;; (if (null? (cdr b))
;; (set-cdr! b a)
;; (loop b a (cdr b)))
;; b)
;; (else ; (car a) <= (car b)
;; (if (null? (cdr a))
;; (set-cdr! a b)
;; (loop a (cdr a) b))
;; a)))
;; ;;; (sort! sequence less?)
;; ;;; sorts the list or vector sequence destructively. It uses a version
;; ;;; of merge-sort invented, to the best of my knowledge, by David H. D.
;; ;;; Warren, and first used in the DEC-10 Prolog system. R. A. O'Keefe
;; ;;; adapted it to work destructively in Scheme.
;; (define (sort! seq less?)
;; (define (step n)
;; (cond
;; ((> n 2)
;; (let* ((j (quotient n 2))
;; (a (step j))
;; (k (- n j))
;; (b (step k)))
;; (merge! a b less?)))
;; ((= n 2)
;; (let ((x (car seq))
;; (y (cadr seq))
;; (p seq))
;; (set! seq (cddr seq))
;; (if (less? y x) (begin
;; (set-car! p y)
;; (set-car! (cdr p) x)))
;; (set-cdr! (cdr p) '())
;; p))
;; ((= n 1)
;; (let ((p seq))
;; (set! seq (cdr seq))
;; (set-cdr! p '())
;; p))
;; (else
;; '()) ))
;; (if (vector? seq)
;; (let ((n (vector-length seq))
;; (vec seq))
;; (set! seq (vector->list seq))
;; (do ((p (step n) (cdr p))
;; (i 0 (+ i 1)))
;; ((null? p) vec)
;; (vector-set! vec i (car p)) ))
;; ;; otherwise, assume it is a list
;; (step (length seq)) ))
;; ;;; (sort sequence less?)
;; ;;; sorts a vector or list non-destructively. It does this by sorting a
;; ;;; copy of the sequence. My understanding is that the Standard says
;; ;;; that the result of append is always "newly allocated" except for
;; ;;; sharing structure with "the last argument", so (append x '()) ought
;; ;;; to be a standard way of copying a list x.
;; (define (sort seq less?)
;; (if (vector? seq)
;; (list->vector (sort! (vector->list seq) less?))
;; (sort! (append seq '()) less?)))
;; ;;; Topological sort with cycle detection:
;; ;;
;; ;; A functional implementation of the algorithm described in Cormen,
;; ;; et al. (2009), Introduction to Algorithms (3rd ed.), pp. 612-615.
;; (define (topological-sort dag pred)
;; (define (visit dag node edges path state)
;; (case (alist-ref node (car state) pred)
;; ((grey)
;; (errorf 'topological-sort "cycle detected"
;; ,(list (cons node (reverse path)))))
;; ((black)
;; state)
;; (else
;; (let walk ((edges (or edges (alist-ref node dag pred '())))
;; (state (cons (cons (cons node 'grey) (car state))
;; (cdr state))))
;; (if (null? edges)
;; (cons (alist-update! node 'black (car state) pred)
;; (cons node (cdr state)))
;; (let ((edge (car edges)))
;; (walk (cdr edges)
;; (visit dag
;; edge
;; #f
;; (cons edge path)
;; state))))))))
;; (let loop ((dag dag)
;; (state (cons (list) (list))))
;; (if (null? dag)
;; (cdr state)
;; (loop (cdr dag)
;; (visit dag
;; (caar dag)
;; (cdar dag)
;; '()
;; state)))))
;;; Binary search:
(define binary-search
(lambda (vec proc)
(if (pair? vec)
(set! vec (list->vector vec))
(assert (and 'binary-search (vector? vec))))
(let ([len (vector-length vec)])
(and (fx> len 0)
(let loop ([ps 0]
[pe len] )
(let ([p (fx+ ps (bitwise-arithmetic-shift-right (fx- pe ps) 1))])
(let* ([x (vector-ref vec p)]
[r (proc x)] )
(cond [(fx= r 0) p]
[(fx< r 0) (and (not (fx= pe p)) (loop ps p))]
[else (and (not (fx= ps p)) (loop p pe))] ) ) ) ) ) ) ) )
#!eof
;; TODO FIX THE STUFF BELOW
;;; Search one string inside another:
(let ()
(define (traverse which where start test loc)
(assert (string? which))
(assert (string? where))
(let ([wherelen (string-length where)]
[whichlen (string-length which)] )
(assert (exact? start ))
(let loop ([istart start] [iend whichlen])
(cond [(fx> iend wherelen) #f]
[(test istart whichlen) istart]
[else
(loop (fx+ istart 1)
(fx+ iend 1) ) ] ) ) ) )
(set! ##sys#substring-index
(lambda (which where start)
(traverse
which where start
(lambda (i l) (##core#inline "C_substring_compare" which where 0 i l))
'substring-index) ) )
(set! ##sys#substring-index-ci
(lambda (which where start)
(traverse
which where start
(lambda (i l) (##core#inline "C_substring_compare_case_insensitive" which where 0 i l))
'substring-index-ci) ) ) )
(define (substring-index which where #!optional (start 0))
(##sys#substring-index which where start) )
(define (substring-index-ci which where #!optional (start 0))
(##sys#substring-index-ci which where start) )
;;; 3-Way string comparison:
(define (string-compare3 s1 s2)
(##sys#check-string s1 'string-compare3)
(##sys#check-string s2 'string-compare3)
(let ((len1 (##sys#size s1))
(len2 (##sys#size s2)) )
(let* ((len-diff (fx- len1 len2))
(cmp (##core#inline "C_string_compare" s1 s2 (if (fx< len-diff 0) len1 len2))))
(if (fx= cmp 0)
len-diff
cmp))))
(define (string-compare3-ci s1 s2)
(##sys#check-string s1 'string-compare3-ci)
(##sys#check-string s2 'string-compare3-ci)
(let ((len1 (##sys#size s1))
(len2 (##sys#size s2)) )
(let* ((len-diff (fx- len1 len2))
(cmp (##core#inline "C_string_compare_case_insensitive" s1 s2 (if (fx< len-diff 0) len1 len2))))
(if (fx= cmp 0)
len-diff
cmp))))
;;; Substring comparison:
(define (##sys#substring=? s1 s2 start1 start2 n)
(##sys#check-string s1 'substring=?)
(##sys#check-string s2 'substring=?)
(let ((len (or n
(fxmin (fx- (##sys#size s1) start1)
(fx- (##sys#size s2) start2) ) ) ) )
(##sys#check-exact start1 'substring=?)
(##sys#check-exact start2 'substring=?)
(##core#inline "C_substring_compare" s1 s2 start1 start2 len) ) )
(define (substring=? s1 s2 #!optional (start1 0) (start2 0) len)
(##sys#substring=? s1 s2 start1 start2 len) )
(define (##sys#substring-ci=? s1 s2 start1 start2 n)
(##sys#check-string s1 'substring-ci=?)
(##sys#check-string s2 'substring-ci=?)
(let ((len (or n
(fxmin (fx- (##sys#size s1) start1)
(fx- (##sys#size s2) start2) ) ) ) )
(##sys#check-exact start1 'substring-ci=?)
(##sys#check-exact start2 'substring-ci=?)
(##core#inline "C_substring_compare_case_insensitive"
s1 s2 start1 start2 len) ) )
(define (substring-ci=? s1 s2 #!optional (start1 0) (start2 0) len)
(##sys#substring-ci=? s1 s2 start1 start2 len) )
;;; Split string into substrings:
(define string-split
(lambda (str . delstr-and-flag)
(##sys#check-string str 'string-split)
(let* ([del (if (null? delstr-and-flag) "\t\n " (car delstr-and-flag))]
[flag (if (fx= (length delstr-and-flag) 2) (cadr delstr-and-flag) #f)]
[strlen (##sys#size str)] )
(##sys#check-string del 'string-split)
(let ([dellen (##sys#size del)]
[first #f] )
(define (add from to last)
(let ([node (cons (##sys#substring str from to) '())])
(if first
(##sys#setslot last 1 node)
(set! first node) )
node) )
(let loop ([i 0] [last #f] [from 0])
(cond [(fx>= i strlen)
(when (or (fx> i from) flag) (add from i last))
(or first '()) ]
[else
(let ([c (##core#inline "C_subchar" str i)])
(let scan ([j 0])
(cond [(fx>= j dellen) (loop (fx+ i 1) last from)]
[(eq? c (##core#inline "C_subchar" del j))
(let ([i2 (fx+ i 1)])
(if (or (fx> i from) flag)
(loop i2 (add from i last) i2)
(loop i2 last i2) ) ) ]
[else (scan (fx+ j 1))] ) ) ) ] ) ) ) ) ) )
;;; Translate elements of a string:
(define string-translate
(lambda (str from . to)
(define (instring s)
(let ([len (##sys#size s)])
(lambda (c)
(let loop ([i 0])
(cond [(fx>= i len) #f]
[(eq? c (##core#inline "C_subchar" s i)) i]
[else (loop (fx+ i 1))] ) ) ) ) )
(let* ([from
(cond [(char? from) (lambda (c) (eq? c from))]
[(pair? from) (instring (list->string from))]
[else
(##sys#check-string from 'string-translate)
(instring from) ] ) ]
[to
(and (pair? to)
(let ([tx (car to )])
(cond [(char? tx) tx]
[(pair? tx) (list->string tx)]
[else
(##sys#check-string tx 'string-translate)
tx] ) ) ) ]
[tlen (and (string? to) (##sys#size to))] )
(##sys#check-string str 'string-translate)
(let* ([slen (##sys#size str)]
[str2 (make-string slen)] )
(let loop ([i 0] [j 0])
(if (fx>= i slen)
(if (fx< j i)
(##sys#substring str2 0 j)
str2)
(let* ([ci (##core#inline "C_subchar" str i)]
[found (from ci)] )
(cond [(not found)
(##core#inline "C_setsubchar" str2 j ci)
(loop (fx+ i 1) (fx+ j 1)) ]
[(not to) (loop (fx+ i 1) j)]
[(char? to)
(##core#inline "C_setsubchar" str2 j to)
(loop (fx+ i 1) (fx+ j 1)) ]
[(fx>= found tlen)
(##sys#error 'string-translate "invalid translation destination" i to) ]
[else
(##core#inline "C_setsubchar" str2 j (##core#inline "C_subchar" to found))
(loop (fx+ i 1) (fx+ j 1)) ] ) ) ) ) ) ) ) )
;;; Remove suffix
;; (define (string-chomp str #!optional (suffix "\n"))
;; (assert (and 'string-chomp (string? str)))
;; (assert (and 'string-chomp suffix))
;; (let* ((len (string-length str))
;; (slen (string-length suffix))
;; (diff (fx- len slen)) )
;; (if (and (fx>= len slen)
;; (##core#inline "C_substring_compare" str suffix diff 0 slen) )
;; (substring str 0 diff)
;; str) ) )
; (queue-push-back! queue item)
; Pushes an item into the first position of a queue.
(define (queue-push-back! q item) ; thread-safe
(##sys#check-structure q 'queue 'queue-push-back!)
(let ((newlist (cons item (##sys#slot q 1))))
(##sys#setslot q 1 newlist)
(if (eq? '() (##sys#slot q 2))
(##sys#setslot q 2 newlist))
(##sys#setislot q 3 (fx+ (##sys#slot q 3) 1))))
; (queue-push-back-list! queue item-list)
; Pushes the items in item-list back onto the queue,
; so that (car item-list) becomes the next removable item.
(define (last-pair lst0)
(do ((lst lst0 (cdr lst)))
((eq? (cdr lst) '()) lst)))
(define (queue-push-back-list! q itemlist)
(##sys#check-structure q 'queue 'queue-push-back-list!)
(##sys#check-list itemlist 'queue-push-back-list!)
(let* ((newlist (append itemlist (##sys#slot q 1)))
(newtail (if (eq? newlist '())
'()
(last-pair newlist))))
(##sys#setslot q 1 newlist)
(##sys#setslot q 2 newtail)
(##sys#setislot q 3 (fx+ (##sys#slot q 3) (##core#inline "C_i_length" itemlist)))))