Skip to content

Latest commit

 

History

History
132 lines (97 loc) · 4.47 KB

README.md

File metadata and controls

132 lines (97 loc) · 4.47 KB

OSIRRC Docker Image for Anserini+BM25PRF

Build Status Docker Build Status DOI

Zhaohao Zeng and Tetsuya Sakai

This readme is heavily based (i.e. copied from) the Anserini readme.

This is the docker image for implementing BM25 + Pseudo Relevance Feedback (PRF) [1] with Anserini [2]. The image is conforming to the OSIRRC jig for the Open-Source IR Replicability Challenge (OSIRRC) at SIGIR 2019.

This image is available on Docker Hub.

This image implemented Bm25+Pseudo Relevance Feedback(PRF) with Anserini.

  • Supported test collections: robust04
  • Supported hooks: init, index, search and train

Quick Start

The following jig command can be used to index TREC disks 4/5 for robust04:

python run.py prepare \
  --repo osirrc2019/anserini-bm25prf \
  --tag latest \
  --collections robust04=/path/to/disk45=trectext

The following jig command can be used to perform a retrieval run on the collection with the robust04 test collection with default hyper-parameters.

python run.py search \
  --repo osirrc2019/anserini-bm25prf \
  --output out \
  --qrels qrels/qrels.robust04.txt \
  --topic topics/topics.robust04.txt \
  --collection robust04 \ 
  --top_k 1000

The following jig command can be used to tune the hyper-parameters. Note that the grid search may take several hours.

python run.py train \
   --repo osirrc2019/anserini-bm25prf \
   --tag latest \
   --topic topics/topics.robust04.txt \
   --qrels $(pwd)/qrels/qrels.robust04.txt \
   --validation_split $(pwd)/sample_training_validation_query_ids/robust04_validation.txt \
   --test_split $(pwd)/sample_training_validation_query_ids/robust04_test.txt \
   --model_folder $(pwd)/trained \
   --collection robust04

Expected Results on TREC 2004 Robust

The following numbers should be able to be re-produced using the scripts provided by the jig.

BM25+PRF with Default Hyper-paramteres

Hyper-paramteres: k1=0.9 b=0.4 k1_prf=0.9 b_prf=0.4 num_new_terms=20 num_docs=10 new_term_weight=0.2

Command:

python run.py search \
  --repo osirrc2019/anserini-bm25prf   \
  --output out \
  --qrels qrels/qrels.robust04.txt \
  --topic topics/topics.robust04.txt \
  --collection robust04 
Metric Score
MAP 0.2928
P@30 0.3438

Tuning BM25+PRF

Command:

python run.py train \
   --repo osirrc2019/anserini-bm25prf \
   --tag latest \
   --topic topics/topics.robust04.txt \
   --qrels $(pwd)/qrels/qrels.robust04.txt \
   --validation_split $(pwd)/sample_training_validation_query_ids/robust04_validation.txt \
   --test_split $(pwd)/sample_training_validation_query_ids/robust04_test.txt \
   --model_folder $(pwd)/trained \
   --collection robust04

Tuned Hyper-paramteres:

Paramteres k1 b k1_prf b_prf num_new_terms num_docs new_term_weight
Value 0.9 0.2 0.9 0.6 40 10 0.1

BM25+PRF with Tuned Hyper-paramteres

Hyper-paramteres: k1=0.9 b=0.2 k1_prf=0.9 b_prf=0.6 num_new_terms=40 num_docs=10 new_term_weight=0.1

Command:

 python run.py search \
  --repo osirrc2019/anserini-bm25prf \
  --output out \
  --qrels qrels/qrels.robust04.txt \
  --topic topics/topics.robust04.txt \
  --collection robust04 \
  --opts k1=0.9 b=0.2 k1_prf=0.9 b_prf=0.6 num_new_terms=40 num_docs=10 new_term_weight=0.1 
Metric Score
MAP 0.2916
P@30 0.3396

Yes, the tuned hyper-parameters make the performance worse.......

Reference

[1] Stephen E. Robertson, and Karen Spärck Jones. Simple, proven approaches to text retrieval. University of Cambridge Computer Laboratory, 1994.

[2] Peilin Yang, Hui Fang, and Jimmy Lin. Anserini: Enabling the Use of Lucene for Information Retrieval Research. SIGIR 2017