forked from justchenhao/STANet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
181 lines (151 loc) · 8.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import time
from options.train_options import TrainOptions
from data import create_dataset
from models import create_model
from util.visualizer import Visualizer
import os
from util import html
from util.visualizer import save_images
from util.metrics import AverageMeter
import copy
import numpy as np
import torch
import random
def seed_torch(seed=2019):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# set seeds
# seed_torch(2019)
ifSaveImage = False
def make_val_opt(opt):
val_opt = copy.deepcopy(opt)
val_opt.preprocess = '' #
# hard-code some parameters for test
val_opt.num_threads = 0 # test code only supports num_threads = 1
val_opt.batch_size = 4 # test code only supports batch_size = 1
val_opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed.
val_opt.no_flip = True # no flip; comment this line if results on flipped images are needed.
val_opt.angle = 0
val_opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file.
val_opt.phase = 'val'
val_opt.split = opt.val_split # function in jsonDataset and ListDataset
val_opt.isTrain = False
val_opt.aspect_ratio = 1
val_opt.results_dir = './results/'
val_opt.dataroot = opt.val_dataroot
val_opt.dataset_mode = opt.val_dataset_mode
val_opt.dataset_type = opt.val_dataset_type
val_opt.json_name = opt.val_json_name
val_opt.eval = True
val_opt.num_test = 2000
return val_opt
def print_current_acc(log_name, epoch, score):
"""print current acc on console; also save the losses to the disk
Parameters:
"""
message = '(epoch: %d) ' % epoch
for k, v in score.items():
message += '%s: %.3f ' % (k, v)
print(message) # print the message
with open(log_name, "a") as log_file:
log_file.write('%s\n' % message) # save the message
def val(opt, model):
opt = make_val_opt(opt)
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
# model = create_model(opt) # create a model given opt.model and other options
# model.setup(opt) # regular setup: load and print networks; create schedulers
web_dir = os.path.join(opt.checkpoints_dir, opt.name, '%s_%s' % (opt.phase, opt.epoch)) # define the website directory
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch))
model.eval()
# create a logging file to store training losses
log_name = os.path.join(opt.checkpoints_dir, opt.name, 'val_log.txt')
with open(log_name, "a") as log_file:
now = time.strftime("%c")
log_file.write('================ val acc (%s) ================\n' % now)
running_metrics = AverageMeter()
for i, data in enumerate(dataset):
if i >= opt.num_test: # only apply our model to opt.num_test images.
break
model.set_input(data) # unpack data from data loader
score = model.test(val=True) # run inference
running_metrics.update(score)
visuals = model.get_current_visuals() # get image results
img_path = model.get_image_paths() # get image paths
if i % 5 == 0: # save images to an HTML file
print('processing (%04d)-th image... %s' % (i, img_path))
if ifSaveImage:
save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize)
score = running_metrics.get_scores()
print_current_acc(log_name, epoch, score)
if opt.display_id > 0:
visualizer.plot_current_acc(epoch, float(epoch_iter) / dataset_size, score)
webpage.save() # save the HTML
return score[metric_name]
metric_name = 'F1_1'
if __name__ == '__main__':
opt = TrainOptions().parse() # get training options
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
dataset_size = len(dataset) # get the number of images in the dataset.
print('The number of training images = %d' % dataset_size)
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
visualizer = Visualizer(opt) # create a visualizer that display/save images and plots
total_iters = 0 # the total number of training iterations
miou_best = 0
n_epoch_bad = 0
epoch_best = 0
time_metric = AverageMeter()
time_log_name = os.path.join(opt.checkpoints_dir, opt.name, 'time_log.txt')
with open(time_log_name, "a") as log_file:
now = time.strftime("%c")
log_file.write('================ training time (%s) ================\n' % now)
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
model.train()
# miou_current = val(opt, model)
for i, data in enumerate(dataset): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if total_iters % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
visualizer.reset()
total_iters += opt.batch_size
epoch_iter += opt.batch_size
n_epoch = opt.niter + opt.niter_decay
model.set_input(data) # unpack data from dataset and apply preprocessing
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
if ifSaveImage:
if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file
save_result = total_iters % opt.update_html_freq == 0
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk
losses = model.get_current_losses()
t_comp = (time.time() - iter_start_time) / opt.batch_size
visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data)
if opt.display_id > 0:
visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses)
if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
iter_data_time = time.time()
t_epoch = time.time()-epoch_start_time
time_metric.update(t_epoch)
print_current_acc(time_log_name, epoch,{"current_t_epoch": t_epoch})
if epoch % opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
miou_current = val(opt, model)
if miou_current > miou_best:
miou_best = miou_current
epoch_best = epoch
model.save_networks(str(epoch_best)+"_"+metric_name+'_'+'%0.5f'% miou_best)
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate() # update learning rates at the end of every epoch.
time_ave = time_metric.average()
print_current_acc(time_log_name, epoch, {"ave_t_epoch": time_ave})