Skip to content

Latest commit

 

History

History
248 lines (203 loc) · 15.2 KB

README.md

File metadata and controls

248 lines (203 loc) · 15.2 KB

Running RDMA (remote direct memory access) GPU workloads on OKE

Oracle Cloud Infrastructure Container Engine for Kubernetes (OKE) is a fully-managed, scalable, and highly available service that you can use to deploy your containerized applications to the cloud.

Please visit the OKE documentation page for more information.

Supported Operating Systems

For the A100 and H100 shapes (BM.GPU.H100.8, BM.GPU.A100-v2.8, BM.GPU4.8, BM.GPU.B4.8), Ubuntu 22.04 is supported.

Required policies

The OCI Resource Manager stack template uses the Self Managed Nodes functionality of OKE.

Below policies are required. The OCI Resource Manager stack will create them for you if you have the necessary permissions. If you don't have the permissions, please find more information about the policies below.

Instructions for deploying an OKE cluster with GPUs and RDMA connectivity

You will need a CPU pool and a GPU pool. The OCI Resource Manager stack deploys an operational worker pool by default and you choose to deploy addidional CPU/GPU worker pools.

You can use the below image for both CPU and GPU pools.

Note

The GPU image has the GPU drivers pre-installed.

Image to import and use for the H100 and A100 nodes

You can use the instructions here. for importing the below image to your tenancy.

GPU driver v535 with CUDA 12.2

GPU driver v550 with CUDA 12.4

Deploy the cluster using the Oracle Cloud Resource Manager template

You can easily deploy the cluster using the Deploy to Oracle Cloud button below.

Deploy to Oracle Cloud

For the image ID, use the ID of the image that you imported in the previous step.

The template will deploy a bastion instance and an operator instance. The operator instance will have access to the OKE cluster. You can connect to the operator instance via SSH with ssh -J ubuntu@<bastion IP> ubuntu@<operator IP>.

You can also find this information under the Application information tab in the OCI Resource Manager stack.

Wait until you see all nodes in the cluster

kubectl get nodes

NAME           STATUS     ROLES    AGE     VERSION
10.0.103.73    Ready      <none>   2d23h   v1.25.6
10.0.127.206   Ready      node     2d3h    v1.25.6
10.0.127.32    Ready      node     2d3h    v1.25.6
10.0.83.93     Ready      <none>   2d23h   v1.25.6
10.0.96.82     Ready      node     2d23h   v1.25.6

Add a Service Account Authentication Token (optional but recommended)

More info here.

kubectl -n kube-system create serviceaccount kubeconfig-sa

kubectl create clusterrolebinding add-on-cluster-admin --clusterrole=cluster-admin --serviceaccount=kube-system:kubeconfig-sa

kubectl apply -f https://raw.githubusercontent.com/oracle-quickstart/oci-hpc-oke/main/manifests/service-account/oke-kubeconfig-sa-token.yaml

TOKEN=$(kubectl -n kube-system get secret oke-kubeconfig-sa-token -o jsonpath='{.data.token}' | base64 --decode)

kubectl config set-credentials kubeconfig-sa --token=$TOKEN

kubectl config set-context --current --user=kubeconfig-sa

Using the host RDMA network interfaces in manifests

In order to use the RDMA interfaces on the host in your pods, you should have the below sections in your manifests:

spec:
  hostNetwork: true
  dnsPolicy: ClusterFirstWithHostNet
  volumes:
  - { name: devinf, hostPath: { path: /dev/infiniband }}
  - { name: shm, emptyDir: { medium: Memory, sizeLimit: 32Gi }}
securityContext:
      privileged: true
      capabilities:
        add: [ "IPC_LOCK" ]
    volumeMounts:
    - { mountPath: /dev/infiniband, name: devinf }
    - { mountPath: /dev/shm, name: shm }

Here's a simple example. You can also look at the NCCL test manifests in the repo here.

apiVersion: v1
kind: Pod
metadata:
  name: rdma-test-pod-1
spec:
  hostNetwork: true
  dnsPolicy: ClusterFirstWithHostNet
  volumes:
  - { name: devinf, hostPath: { path: /dev/infiniband }}
  - { name: shm, emptyDir: { medium: Memory, sizeLimit: 32Gi }}
  restartPolicy: OnFailure
  containers:
  - image: oguzpastirmaci/mofed-perftest:5.4-3.6.8.1-ubuntu20.04-amd64
    name: mofed-test-ctr
    securityContext:
      privileged: true
      capabilities:
        add: [ "IPC_LOCK" ]
    volumeMounts:
    - { mountPath: /dev/infiniband, name: devinf }
    - { mountPath: /dev/shm, name: shm }
    resources:
      requests:
        cpu: 8
        ephemeral-storage: 32Gi
        memory: 2Gi
    command:
    - sh
    - -c
    - |
      ls -l /dev/infiniband /sys/class/net
      sleep 1000000

Optional - Deploy Volcano and run the NCCL test

Volcano is needed for running the optional NCCL test. It's not required for the regular operation of the cluster, you can remove it after you finish running the NCCL test.

Deploy Volcano

helm repo add volcano-sh https://volcano-sh.github.io/helm-charts
helm install volcano volcano-sh/volcano -n volcano-system --create-namespace

kubectl create serviceaccount -n default mpi-worker-view
kubectl create rolebinding default-view --namespace default --serviceaccount default:mpi-worker-view --clusterrole view

Run the NCCL test

Important

The NCCL parameters are different between the H100 and A100 shapes. Please make sure that you are using the correct manifest for your bare metal GPU shapes.

BM.GPU.H100
kubectl apply -f https://raw.githubusercontent.com/oracle-quickstart/oci-hpc-oke/main/manifests/nccl-tests/BM.GPU.H100.8-nccl-test.yaml
BM.GPU.A100-v2.8
kubectl apply -f https://raw.githubusercontent.com/oracle-quickstart/oci-hpc-oke/main/manifests/nccl-tests/BM.GPU.A100-v2.8-nccl-test.yaml
BM.GPU4.8
kubectl apply -f https://raw.githubusercontent.com/oracle-quickstart/oci-hpc-oke/main/manifests/nccl-tests/BM.GPU4.8-nccl-test.yaml
BM.GPU.B4.8
kubectl apply -f https://raw.githubusercontent.com/oracle-quickstart/oci-hpc-oke/main/manifests/nccl-tests/BM.GPU.B4.8-nccl-test.yaml

The initial pull of the container will take long. Once the master pod nccl-allreduce-job0-mpimaster-0 starts running, you can check it logs for the NCCL test result.

Defaulted container "mpimaster" out of: mpimaster, wait-for-workers (init)
Warning: Permanently added 'nccl-allreduce-job0-mpiworker-0.nccl-allreduce-job0' (ED25519) to the list of known hosts.
Warning: Permanently added 'nccl-allreduce-job0-mpiworker-1.nccl-allreduce-job0' (ED25519) to the list of known hosts.
# nThread 1 nGpus 1 minBytes 8 maxBytes 8589934592 step: 2(factor) warmup iters: 5 iters: 20 agg iters: 1 validation: 1 graph: 0
#
# Using devices
#  Rank  0 Group  0 Pid     43 on nccl-allreduce-job0-mpiworker-0 device  0 [0x0f] NVIDIA A100-SXM4-40GB
#  Rank  1 Group  0 Pid     44 on nccl-allreduce-job0-mpiworker-0 device  1 [0x15] NVIDIA A100-SXM4-40GB
#  Rank  2 Group  0 Pid     45 on nccl-allreduce-job0-mpiworker-0 device  2 [0x51] NVIDIA A100-SXM4-40GB
#  Rank  3 Group  0 Pid     46 on nccl-allreduce-job0-mpiworker-0 device  3 [0x54] NVIDIA A100-SXM4-40GB
#  Rank  4 Group  0 Pid     47 on nccl-allreduce-job0-mpiworker-0 device  4 [0x8d] NVIDIA A100-SXM4-40GB
#  Rank  5 Group  0 Pid     48 on nccl-allreduce-job0-mpiworker-0 device  5 [0x92] NVIDIA A100-SXM4-40GB
#  Rank  6 Group  0 Pid     49 on nccl-allreduce-job0-mpiworker-0 device  6 [0xd6] NVIDIA A100-SXM4-40GB
#  Rank  7 Group  0 Pid     50 on nccl-allreduce-job0-mpiworker-0 device  7 [0xda] NVIDIA A100-SXM4-40GB
#  Rank  8 Group  0 Pid     43 on nccl-allreduce-job0-mpiworker-1 device  0 [0x0f] NVIDIA A100-SXM4-40GB
#  Rank  9 Group  0 Pid     44 on nccl-allreduce-job0-mpiworker-1 device  1 [0x15] NVIDIA A100-SXM4-40GB
#  Rank 10 Group  0 Pid     45 on nccl-allreduce-job0-mpiworker-1 device  2 [0x51] NVIDIA A100-SXM4-40GB
#  Rank 11 Group  0 Pid     46 on nccl-allreduce-job0-mpiworker-1 device  3 [0x54] NVIDIA A100-SXM4-40GB
#  Rank 12 Group  0 Pid     47 on nccl-allreduce-job0-mpiworker-1 device  4 [0x8d] NVIDIA A100-SXM4-40GB
#  Rank 13 Group  0 Pid     48 on nccl-allreduce-job0-mpiworker-1 device  5 [0x92] NVIDIA A100-SXM4-40GB
#  Rank 14 Group  0 Pid     49 on nccl-allreduce-job0-mpiworker-1 device  6 [0xd6] NVIDIA A100-SXM4-40GB
#  Rank 15 Group  0 Pid     50 on nccl-allreduce-job0-mpiworker-1 device  7 [0xda] NVIDIA A100-SXM4-40GB
#
#                                                              out-of-place                       in-place
#       size         count      type   redop    root     time   algbw   busbw #wrong     time   algbw   busbw #wrong
#        (B)    (elements)                               (us)  (GB/s)  (GB/s)            (us)  (GB/s)  (GB/s)
           8             2     float     sum      -1    36.47    0.00    0.00      0    34.74    0.00    0.00      0
          16             4     float     sum      -1    38.86    0.00    0.00      0    35.65    0.00    0.00      0
          32             8     float     sum      -1    38.53    0.00    0.00      0    35.41    0.00    0.00      0
          64            16     float     sum      -1    39.25    0.00    0.00      0    37.05    0.00    0.00      0
         128            32     float     sum      -1    38.85    0.00    0.01      0    37.21    0.00    0.01      0
         256            64     float     sum      -1    40.68    0.01    0.01      0    38.52    0.01    0.01      0
         512           128     float     sum      -1    39.27    0.01    0.02      0    39.35    0.01    0.02      0
        1024           256     float     sum      -1    41.97    0.02    0.05      0    40.56    0.03    0.05      0
        2048           512     float     sum      -1    43.36    0.05    0.09      0    41.29    0.05    0.09      0
        4096          1024     float     sum      -1    44.54    0.09    0.17      0    43.36    0.09    0.18      0
        8192          2048     float     sum      -1    48.16    0.17    0.32      0    46.51    0.18    0.33      0
       16384          4096     float     sum      -1    49.40    0.33    0.62      0    48.00    0.34    0.64      0
       32768          8192     float     sum      -1    49.66    0.66    1.24      0    49.17    0.67    1.25      0
       65536         16384     float     sum      -1    51.69    1.27    2.38      0    50.09    1.31    2.45      0
      131072         32768     float     sum      -1    54.86    2.39    4.48      0    53.31    2.46    4.61      0
      262144         65536     float     sum      -1    67.95    3.86    7.23      0    65.81    3.98    7.47      0
      524288        131072     float     sum      -1    73.94    7.09   13.29      0    72.87    7.20   13.49      0
     1048576        262144     float     sum      -1    85.58   12.25   22.97      0    84.50   12.41   23.27      0
     2097152        524288     float     sum      -1    99.19   21.14   39.64      0    100.1   20.94   39.27      0
     4194304       1048576     float     sum      -1    127.0   33.03   61.93      0    127.8   32.81   61.52      0
     8388608       2097152     float     sum      -1    174.3   48.13   90.25      0    168.4   49.80   93.38      0
    16777216       4194304     float     sum      -1    282.7   59.35  111.29      0    265.9   63.11  118.32      0
    33554432       8388608     float     sum      -1    452.3   74.18  139.08      0    452.0   74.24  139.19      0
    67108864      16777216     float     sum      -1    821.7   81.67  153.13      0    812.7   82.57  154.83      0
   134217728      33554432     float     sum      -1   1542.0   87.04  163.20      0   1546.1   86.81  162.76      0
   268435456      67108864     float     sum      -1   3042.7   88.22  165.42      0   3065.9   87.55  164.16      0
   536870912     134217728     float     sum      -1   6436.0   83.42  156.41      0   6070.5   88.44  165.82      0
  1073741824     268435456     float     sum      -1   9187.8  116.87  219.12      0   9073.4  118.34  221.89      0
  2147483648     536870912     float     sum      -1    18289  117.42  220.16      0    17557  122.31  229.34      0
  4294967296    1073741824     float     sum      -1    34176  125.67  235.63      0    34417  124.79  233.98      0
  8589934592    2147483648     float     sum      -1    67689  126.90  237.94      0    67811  126.68  237.52      0
# Out of bounds values : 0 OK
# Avg bus bandwidth    : 66.4834
#

FAQ

Are there any features that are not supported when using self-managed nodes?

Yes, some features and capabilities are not available, or not yet available, when using self-managed nodes. Please see this link for a list of features and capabilities that are not available for self-managed nodes.

I don't see my GPU nodes in the OKE page in the console under worker pools

This is expected. Currently, only the worker pools with the node-pool mode are listed. Self-managed nodes (cluster-network and instance-pool modes in worker pools) are created by you and joined to the OKe cluster, rather than OKE has created for you.

Can I use Multi-Instance GPU (MIG)?

Yes, you can configure GPU Operator with MIG. Please see the instructions here.

If I don't need RDMA connectivity between my H100 or A100 nodes, do I still need to follow the instructions in this repo?

No, if you don't need RDMA connectivity between your nodes, you can deploy an OKE cluster without using any self-managed nodes. The easiest way to do it is using the web console. H100 need to have flannel as a POD networking type and make use of a custom images. We are working on a better experience on H100 without RDMA.

I'm getting the "400-InvalidParameter, Shape is incompatible with image" error

Please follow the instructions here to add the capability of the shape that you are getting the error to your imported image.