From 356dc4b63be8d2dfb90fcc91becdd4f7cd867d5c Mon Sep 17 00:00:00 2001 From: Alexander Pivovarov Date: Thu, 8 Aug 2024 03:01:08 +0000 Subject: [PATCH] Add f8E4M3 and f8E3M4 types support --- docs/spec.md | 6 +- stablehlo/dialect/Base.cpp | 5 +- stablehlo/dialect/Base.td | 4 +- stablehlo/dialect/Version.h | 2 +- stablehlo/dialect/VhloBytecode.cpp | 22 + stablehlo/dialect/VhloDialect.td | 1 + stablehlo/dialect/VhloTypes.cpp | 12 + stablehlo/dialect/VhloTypes.td | 6 + stablehlo/reference/Tensor.cpp | 22 +- stablehlo/reference/Types.cpp | 3 +- stablehlo/tests/interpret/constant.mlir | 16 + stablehlo/tests/interpret/dot_general.mlir | 23 + stablehlo/tests/ops_stablehlo.mlir | 32 +- stablehlo/tests/ops_stablehlo_quantized.mlir | 106 +- stablehlo/tests/ops_stablehlo_roundtrip.mlir | 2 + .../stablehlo_legalize_to_vhlo.1_7_0.mlir | 2904 +++++++++++++++++ .../stablehlo_legalize_to_vhlo.1_7_0.mlir.bc | Bin 0 -> 19137 bytes .../vhlo/stablehlo_legalize_to_vhlo.mlir | 16 + 18 files changed, 3108 insertions(+), 74 deletions(-) create mode 100644 stablehlo/tests/vhlo/stablehlo_legalize_to_vhlo.1_7_0.mlir create mode 100644 stablehlo/tests/vhlo/stablehlo_legalize_to_vhlo.1_7_0.mlir.bc diff --git a/docs/spec.md b/docs/spec.md index da857e07a38..149380dfacc 100644 --- a/docs/spec.md +++ b/docs/spec.md @@ -245,8 +245,8 @@ BooleanType ::= 'i1' IntegerType ::= SignedIntegerType | UnsignedIntegerType SignedIntegerType ::= 'si2' | 'si4' | 'si8' | 'si16' | 'si32' | 'si64' UnsignedIntegerType ::= 'ui2' | 'ui4' | 'ui8' | 'ui16' | 'ui32' | 'ui64' -FloatType ::= 'f8E4M3FN' | 'f8E5M2' | 'f8E4M3FNUZ' | 'f8E5M2FNUZ' - | 'f8E4M3B11FNUZ' | 'bf16' | 'f16' | 'f32' | 'f64' +FloatType ::= 'f8E3M4' | 'f8E4M3' | 'f8E4M3FN' | 'f8E4M3FNUZ' | 'f8E4M3B11FNUZ' + | 'f8E5M2' | 'f8E5M2FNUZ' | 'bf16' | 'f16' | 'f32' | 'f64' TensorFloat32 ::= 'tf32' ComplexType ::= 'complex' '<' ComplexElementType '>' ComplexElementType ::= 'f32' | 'f64' @@ -265,6 +265,8 @@ values of type `tensor`). inclusive, and unsigned `uiN` types represent integer values from `0` to `2^N-1` inclusive. * **Floating-point types** can be one of the following: + * `f8E3M4`, `f8E4M3` and `f8E5M2` 8-bit floating point numbers following + IEEE-754 conventions. * `f8E4M3FN` and `f8E5M2` types corresponding to respectively the `E4M3` and `E5M2` encodings of the FP8 format described in [FP8 Formats for Deep Learning](https://arxiv.org/abs/2209.05433). diff --git a/stablehlo/dialect/Base.cpp b/stablehlo/dialect/Base.cpp index 557a101198c..d8d13396475 100644 --- a/stablehlo/dialect/Base.cpp +++ b/stablehlo/dialect/Base.cpp @@ -647,8 +647,9 @@ FailureOr getKnownDotAlgorithm( if (lhsComponentCount != 1 || rhsComponentCount != 1) return failure(); auto isAnyF8 = [](Type t) { - return llvm::isa(t); + return llvm::isa(t); }; if (isAnyF8(lhsPrecisionType) && isAnyF8(rhsPrecisionType) && accumulationType.isF32() && numPrimitiveOperations == 1) { diff --git a/stablehlo/dialect/Base.td b/stablehlo/dialect/Base.td index c58c1229075..296b118c4ad 100644 --- a/stablehlo/dialect/Base.td +++ b/stablehlo/dialect/Base.td @@ -42,8 +42,8 @@ def HLO_SInt : SignlessIntOfWidths<[2, 4, 8, 16, 32, 64]>; def HLO_UInt : UnsignedIntOfWidths<[2, 4, 8, 16, 32, 64]>; def HLO_Int : AnyTypeOf<[HLO_SInt, HLO_UInt]>; -def HLO_Float : AnyTypeOf<[F8E4M3B11FNUZ, F8E4M3FN, F8E4M3FNUZ, F8E5M2, - F8E5M2FNUZ, F16, F32, F64, BF16]>; +def HLO_Float : AnyTypeOf<[F8E3M4, F8E4M3, F8E4M3FN, F8E4M3FNUZ, F8E4M3B11FNUZ, + F8E5M2, F8E5M2FNUZ, F16, F32, F64, BF16]>; def HLO_Float32Or64 : AnyTypeOf<[F32, F64]>; def HLO_Complex : Complex>; diff --git a/stablehlo/dialect/Version.h b/stablehlo/dialect/Version.h index 2dfbd631c0a..f02f251d1c3 100644 --- a/stablehlo/dialect/Version.h +++ b/stablehlo/dialect/Version.h @@ -38,7 +38,7 @@ class Version { static FailureOr fromString(llvm::StringRef versionRef); /// Return a Version representing the current VHLO dialect version. - static Version getCurrentVersion() { return Version(1, 6, 3); } + static Version getCurrentVersion() { return Version(1, 7, 0); } /// Return a Version representing the minimum supported VHLO dialect version. static Version getMinimumVersion() { return Version(0, 9, 0); } diff --git a/stablehlo/dialect/VhloBytecode.cpp b/stablehlo/dialect/VhloBytecode.cpp index 81d01daa47b..3a32eee1c55 100644 --- a/stablehlo/dialect/VhloBytecode.cpp +++ b/stablehlo/dialect/VhloBytecode.cpp @@ -216,6 +216,14 @@ enum TypeCode { /// } kFloatF64V1Type = 5, + /// FloatF8E3M4V1Type { + /// } + kFloatF8E3M4V1Type = 36, + + /// FloatF8E4M3V1Type { + /// } + kFloatF8E4M3V1Type = 35, + /// FloatF8E4M3FNV1Type { /// } kFloatF8E4M3FNV1Type = 6, @@ -698,9 +706,11 @@ const llvm::fltSemantics &getFloatSemantics(Type type) { if (isa(type)) return APFloat::IEEEhalf(); if (isa(type)) return APFloat::IEEEsingle(); if (isa(type)) return APFloat::IEEEdouble(); + if (isa(type)) return APFloat::Float8E3M4(); if (isa(type)) return APFloat::Float8E4M3FNUZ(); if (isa(type)) return APFloat::Float8E4M3B11FNUZ(); if (isa(type)) return APFloat::Float8E4M3FN(); + if (isa(type)) return APFloat::Float8E4M3(); if (isa(type)) return APFloat::Float8E5M2FNUZ(); if (isa(type)) return APFloat::Float8E5M2(); if (isa(type)) return APFloat::FloatTF32(); @@ -968,6 +978,8 @@ Type VhloBytecodeInterface::readType(DialectBytecodeReader &reader) const { return FloatF64V1Type::get(getContext()); case vhlo_encoding::kFloatF8E5M2V1Type: return FloatF8E5M2V1Type::get(getContext()); + case vhlo_encoding::kFloatF8E4M3V1Type: + return FloatF8E4M3V1Type::get(getContext()); case vhlo_encoding::kFloatF8E4M3FNV1Type: return FloatF8E4M3FNV1Type::get(getContext()); case vhlo_encoding::kFloatF8E5M2FNUZV1Type: @@ -976,6 +988,8 @@ Type VhloBytecodeInterface::readType(DialectBytecodeReader &reader) const { return FloatF8E4M3FNUZV1Type::get(getContext()); case vhlo_encoding::kFloatF8E4M3B11FNUZV1Type: return FloatF8E4M3B11FNUZV1Type::get(getContext()); + case vhlo_encoding::kFloatF8E3M4V1Type: + return FloatF8E3M4V1Type::get(getContext()); case vhlo_encoding::kFloatTF32V1Type: return FloatTF32V1Type::get(getContext()); case vhlo_encoding::kFunctionV1Type: @@ -1060,6 +1074,14 @@ LogicalResult VhloBytecodeInterface::writeType( LOG_WRITE_CALL; return writer.writeVarInt(vhlo_encoding::kFloatF64V1Type), success(); }) + .Case([&](FloatF8E3M4V1Type) { + LOG_WRITE_CALL; + return writer.writeVarInt(vhlo_encoding::kFloatF8E3M4V1Type), success(); + }) + .Case([&](FloatF8E4M3V1Type) { + LOG_WRITE_CALL; + return writer.writeVarInt(vhlo_encoding::kFloatF8E4M3V1Type), success(); + }) .Case([&](FloatF8E4M3FNV1Type) { LOG_WRITE_CALL; return writer.writeVarInt(vhlo_encoding::kFloatF8E4M3FNV1Type), diff --git a/stablehlo/dialect/VhloDialect.td b/stablehlo/dialect/VhloDialect.td index 2da478ec764..ab295e11b19 100644 --- a/stablehlo/dialect/VhloDialect.td +++ b/stablehlo/dialect/VhloDialect.td @@ -45,6 +45,7 @@ def VHLO_Dialect : Dialect { 1.4.0: Add `tan` op to StableHLO opset. 1.5.0: Make collective ops (`all_reduce`, `all_gather`, `all_to_all`) variadic. 1.6.0: Add DotAlgorithm specificaiton to `dot_general`. + 1.7.0: Introduce `f8E4M3` and `f8E3M4` types. }]; let useDefaultAttributePrinterParser = 0; diff --git a/stablehlo/dialect/VhloTypes.cpp b/stablehlo/dialect/VhloTypes.cpp index cf66767c89b..bbbb1af86bf 100644 --- a/stablehlo/dialect/VhloTypes.cpp +++ b/stablehlo/dialect/VhloTypes.cpp @@ -84,6 +84,12 @@ void VhloTypeConverter::addBuiltinToVhloConversions() { [&](Float32Type type) { return FloatF32V1Type::get(type.getContext()); }); addConversion( [&](Float64Type type) { return FloatF64V1Type::get(type.getContext()); }); + addConversion([&](Float8E3M4Type type) { + return FloatF8E3M4V1Type::get(type.getContext()); + }); + addConversion([&](Float8E4M3Type type) { + return FloatF8E4M3V1Type::get(type.getContext()); + }); addConversion([&](Float8E4M3FNType type) { return FloatF8E4M3FNV1Type::get(type.getContext()); }); @@ -176,6 +182,12 @@ void VhloTypeConverter::addVhloToBuiltinConversions() { [&](FloatF32V1Type type) { return Float32Type::get(type.getContext()); }); addConversion( [&](FloatF64V1Type type) { return Float64Type::get(type.getContext()); }); + addConversion([&](FloatF8E3M4V1Type type) { + return Float8E3M4Type::get(type.getContext()); + }); + addConversion([&](FloatF8E4M3V1Type type) { + return Float8E4M3Type::get(type.getContext()); + }); addConversion([&](FloatF8E4M3FNV1Type type) { return Float8E4M3FNType::get(type.getContext()); }); diff --git a/stablehlo/dialect/VhloTypes.td b/stablehlo/dialect/VhloTypes.td index 8f9d72c871d..b25c86f7d92 100644 --- a/stablehlo/dialect/VhloTypes.td +++ b/stablehlo/dialect/VhloTypes.td @@ -79,6 +79,12 @@ def VHLO_FloatF32V1 : VHLO_TypeDef<"FloatF32V1", "f32_v1", "0.9.0", "current">; // Corresponds to the 'f64' FloatType from the StableHLO spec. def VHLO_FloatF64V1 : VHLO_TypeDef<"FloatF64V1","f64_v1", "0.9.0", "current">; +// Corresponds to the 'f8E3M4' FloatType from the StableHLO spec. +def VHLO_FloatF8E3M4V1 : VHLO_TypeDef<"FloatF8E3M4V1", "f8E3M4_v1", "1.7.0", "current">; + +// Corresponds to the 'f8E4M3' FloatType from the StableHLO spec. +def VHLO_FloatF8E4M3V1 : VHLO_TypeDef<"FloatF8E4M3V1", "f8E4M3_v1", "1.7.0", "current">; + // Corresponds to the 'f8E4M3FN' FloatType from the StableHLO spec. def VHLO_FloatF8E4M3FNV1 : VHLO_TypeDef<"FloatF8E4M3FNV1", "f8E4M3FN_v1", "0.9.0", "current">; diff --git a/stablehlo/reference/Tensor.cpp b/stablehlo/reference/Tensor.cpp index a1e66eef6cf..97ac92e3a36 100644 --- a/stablehlo/reference/Tensor.cpp +++ b/stablehlo/reference/Tensor.cpp @@ -118,11 +118,21 @@ Element Tensor::get(const Index &index) const { getSizeInBytes(elementType) * flattenIndex(getShape(), index); // Handle floating-point types. + if (elementType.isFloat8E3M4()) { + auto elementData = reinterpret_cast(elementPtr); + return Element(elementType, APFloat(llvm::APFloatBase::Float8E3M4(), + APInt(8, *elementData))); + } if (elementType.isFloat8E4M3B11FNUZ()) { auto elementData = reinterpret_cast(elementPtr); return Element(elementType, APFloat(llvm::APFloatBase::Float8E4M3B11FNUZ(), APInt(8, *elementData))); } + if (elementType.isFloat8E4M3()) { + auto elementData = reinterpret_cast(elementPtr); + return Element(elementType, APFloat(llvm::APFloatBase::Float8E4M3(), + APInt(8, *elementData))); + } if (elementType.isFloat8E4M3FN()) { auto elementData = reinterpret_cast(elementPtr); return Element(elementType, APFloat(llvm::APFloatBase::Float8E4M3FN(), @@ -252,7 +262,8 @@ void Tensor::set(const Index &index, const Element &element) { getSizeInBytes(elementType) * flattenIndex(getShape(), index); // Handle floating-point types. - if (elementType.isFloat8E4M3B11FNUZ() || elementType.isFloat8E4M3FN() || + if (elementType.isFloat8E3M4() || elementType.isFloat8E4M3B11FNUZ() || + elementType.isFloat8E4M3() || elementType.isFloat8E4M3FN() || elementType.isFloat8E4M3FNUZ() || elementType.isFloat8E5M2() || elementType.isFloat8E5M2FNUZ()) { auto elementData = reinterpret_cast(elementPtr); @@ -446,7 +457,8 @@ Tensor makeTensor(DenseElementsAttr attr) { auto elementType = type.getElementType(); // Handle floating-point types. - if (elementType.isFloat8E4M3B11FNUZ() || elementType.isFloat8E4M3FN() || + if (elementType.isFloat8E3M4() || elementType.isFloat8E4M3B11FNUZ() || + elementType.isFloat8E4M3() || elementType.isFloat8E4M3FN() || elementType.isFloat8E4M3FNUZ() || elementType.isFloat8E5M2() || elementType.isFloat8E5M2FNUZ()) { auto floatValues = llvm::map_to_vector( @@ -454,9 +466,9 @@ Tensor makeTensor(DenseElementsAttr attr) { return value.bitcastToAPInt().getZExtValue(); }); - // For f8E4M3B11FNUZ, f8E4M3FN, f8E4M3FNUZ, f8E5M2, and f8E5M2FNUZ - // floating-point types, we use uint8_t as their storage type because there - // are no builtin types for those. + // For f8E3M4, f8E4M3, f8E4M3FN, f8E4M3FNUZ, f8E4M3B11FNUZ, f8E5M2, and + // f8E5M2FNUZ floating-point types, we use uint8_t as their storage type + // because there are no builtin types for those. return Tensor(type, HeapAsmResourceBlob::allocateAndCopyInferAlign( floatValues)); } diff --git a/stablehlo/reference/Types.cpp b/stablehlo/reference/Types.cpp index e55c5207938..9944ca07c1a 100644 --- a/stablehlo/reference/Types.cpp +++ b/stablehlo/reference/Types.cpp @@ -48,7 +48,8 @@ bool isSupportedIntegerType(Type type) { } bool isSupportedFloatType(Type type) { - return type.isFloat8E4M3B11FNUZ() || type.isFloat8E4M3FN() || + return type.isFloat8E3M4() || type.isFloat8E4M3B11FNUZ() || + type.isFloat8E4M3() || type.isFloat8E4M3FN() || type.isFloat8E4M3FNUZ() || type.isFloat8E5M2() || type.isFloat8E5M2FNUZ() || type.isF16() || type.isBF16() || type.isF32() || type.isF64(); diff --git a/stablehlo/tests/interpret/constant.mlir b/stablehlo/tests/interpret/constant.mlir index 26f00eb65a7..2e24ba02f81 100644 --- a/stablehlo/tests/interpret/constant.mlir +++ b/stablehlo/tests/interpret/constant.mlir @@ -96,6 +96,14 @@ func.func @constant_op_test_ui64() { // ----- +func.func @constant_op_test_f8_e3m4() { + %0 = stablehlo.constant dense<[0.0, -0.0, 1.0, 0.125, 0.1, 3.1415, 0x7F, 0xFF, 0x01, 0x81]> : tensor<10xf8E3M4> + check.expect_almost_eq_const %0, dense<[0.0, -0.0, 1.0, 0.125, 0.09375, 3.125, 0x7F, 0xFF, 0.015625, -0.015625]> : tensor<10xf8E3M4> + func.return +} + +// ----- + func.func @constant_op_test_f8_e4m3b11_fnuz() { %0 = stablehlo.constant dense<[0.0, -0.0, 1.0, 0.125, 0.1, 3.1415, 0x7F, 0xFF, 0x01, 0x81]> : tensor<10xf8E4M3B11FNUZ> check.expect_almost_eq_const %0, dense<[0.0, 0.0, 1.0, 0.125, 0.101563, 3.25, 30.0, -30.0, 0.00012207, -0.00012207]> : tensor<10xf8E4M3B11FNUZ> @@ -104,6 +112,14 @@ func.func @constant_op_test_f8_e4m3b11_fnuz() { // ----- +func.func @constant_op_test_f8_e4m3() { + %0 = stablehlo.constant dense<[0.0, -0.0, 1.0, 0.125, 0.1, 3.1415, 0x7F, 0xFF, 0x01, 0x81]> : tensor<10xf8E4M3> + check.expect_almost_eq_const %0, dense<[0.0, -0.0, 1.0, 0.125, 0.1015630, 3.25, 0x7F, 0xFF, 0.001953130, -0.001953130]> : tensor<10xf8E4M3> + func.return +} + +// ----- + func.func @constant_op_test_f8_e4m3_fn() { %0 = stablehlo.constant dense<[0.0, -0.0, 1.0, 0.125, 0.1, 3.1415, 0x7F, 0xFF, 0x01, 0x81]> : tensor<10xf8E4M3FN> check.expect_almost_eq_const %0, dense<[0.0, -0.0, 1.0, 0.125, 0.1015630, 3.25, 0x7F, 0xFF, 0.001953130, -0.001953130]> : tensor<10xf8E4M3FN> diff --git a/stablehlo/tests/interpret/dot_general.mlir b/stablehlo/tests/interpret/dot_general.mlir index 74b02afceb1..224a61e5a97 100644 --- a/stablehlo/tests/interpret/dot_general.mlir +++ b/stablehlo/tests/interpret/dot_general.mlir @@ -72,3 +72,26 @@ func.func @dot_general_op_test_different_operand_and_result_element_types() { [[5.0, 6.0], [7.0, 8.0]]]> : tensor<2x2x2xf64> func.return } + +// ----- + +func.func @add_op_test_f8E3M4() { + %0 = stablehlo.constant dense<[0.0, 1.0, 2.0, 3.0]> : tensor<4xf8E3M4> + %result = stablehlo.dot_general %0, %0, + contracting_dims = [0] x [0] + : (tensor<4xf8E3M4>, tensor<4xf8E3M4>) -> tensor + check.expect_almost_eq_const %result, dense<14.0> : tensor + func.return +} + +// ----- + +func.func @add_op_test_f8E4M3() { + %0 = stablehlo.constant dense<[0.0, 1.0, 2.0, 3.0, + 4.0, 5.0, 6.0, 7.0]> : tensor<8xf8E4M3> + %result = stablehlo.dot_general %0, %0, + contracting_dims = [0] x [0] + : (tensor<8xf8E4M3>, tensor<8xf8E4M3>) -> tensor + check.expect_almost_eq_const %result, dense<140.0> : tensor + func.return +} diff --git a/stablehlo/tests/ops_stablehlo.mlir b/stablehlo/tests/ops_stablehlo.mlir index ab49e174622..736ff25da15 100644 --- a/stablehlo/tests/ops_stablehlo.mlir +++ b/stablehlo/tests/ops_stablehlo.mlir @@ -2190,7 +2190,7 @@ func.func @rng_normal_invalid_shape(%arg0: tensor, %arg1: tensor) { func.func @rng_normal_invalid_mu_rank(%mu: tensor<1xf32>, %sigma: tensor) -> tensor<2x3x5xf32> { %shape = stablehlo.constant dense<[2, 3, 5]> : tensor<3xi64> - // expected-error@+1 {{#0 must be 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values, but got 'tensor<1xf32>'}} + // expected-error@+1 {{#0 must be 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values, but got 'tensor<1xf32>'}} %0 = "stablehlo.rng"(%mu, %sigma, %shape) {rng_distribution = #stablehlo}: (tensor<1xf32>, tensor, tensor<3xi64>) -> tensor<2x3x5xf32> func.return %0 : tensor<2x3x5xf32> } @@ -2199,7 +2199,7 @@ func.func @rng_normal_invalid_mu_rank(%mu: tensor<1xf32>, %sigma: tensor) - func.func @rng_normal_invalid_sigma_rank(%mu: tensor, %sigma: tensor<1xf32>) -> tensor<2x3x5xf32> { %shape = stablehlo.constant dense<[2, 3, 5]> : tensor<3xi64> - // expected-error@+1 {{#1 must be 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values, but got 'tensor<1xf32>'}} + // expected-error@+1 {{#1 must be 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values, but got 'tensor<1xf32>'}} %0 = "stablehlo.rng"(%mu, %sigma, %shape) {rng_distribution = #stablehlo}: (tensor, tensor<1xf32>, tensor<3xi64>) -> tensor<2x3x5xf32> func.return %0 : tensor<2x3x5xf32> } @@ -2217,7 +2217,7 @@ func.func @rng_normal_invalid_shape_rank(%mu: tensor, %sigma: tensor) func.func @rng_normal_invalid_type(%arg0: tensor>, %arg1: tensor) { %cst = stablehlo.constant dense<7> : tensor<1xi64> - // expected-error @+1 {{#0 must be 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values, but got 'tensor>'}} + // expected-error @+1 {{#0 must be 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values, but got 'tensor>'}} %0 = "stablehlo.rng"(%arg0, %arg1, %cst) {rng_distribution = #stablehlo}: (tensor>, tensor, tensor<1xi64>) -> tensor<7xf32> func.return } @@ -2252,7 +2252,7 @@ func.func @rng_uniform_invalid_shape(%arg0: tensor, %arg1: tensor, %ar func.func @rng_uniform_invalid_a_rank(%a: tensor<1xf32>, %b: tensor) -> tensor<2x3x5xf32> { %shape = stablehlo.constant dense<[2, 3, 5]> : tensor<3xi64> - // expected-error@+1 {{operand #0 must be 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values, but got 'tensor<1xf32>'}} + // expected-error@+1 {{operand #0 must be 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values, but got 'tensor<1xf32>'}} %0 = "stablehlo.rng"(%a, %b, %shape) {rng_distribution = #stablehlo}: (tensor<1xf32>, tensor, tensor<3xi64>) -> tensor<2x3x5xf32> func.return %0 : tensor<2x3x5xf32> } @@ -2262,7 +2262,7 @@ func.func @rng_uniform_invalid_a_rank(%a: tensor<1xf32>, %b: tensor) -> ten func.func @rng_uniform_invalid_b_rank(%a: tensor, %b: tensor<1xf32>) -> tensor<2x3x5xf32> { %shape = stablehlo.constant dense<[2, 3, 5]> : tensor<3xi64> - // expected-error@+1 {{operand #1 must be 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values, but got 'tensor<1xf32>'}} + // expected-error@+1 {{operand #1 must be 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values, but got 'tensor<1xf32>'}} %0 = "stablehlo.rng"(%a, %b, %shape) {rng_distribution = #stablehlo}: (tensor, tensor<1xf32>, tensor<3xi64>) -> tensor<2x3x5xf32> func.return %0 : tensor<2x3x5xf32> } @@ -2280,7 +2280,7 @@ func.func @rng_uniform_invalid_shape_rank(%a: tensor, %b: tensor) -> t func.func @rng_uniform_invalid_type(%a: tensor>, %b: tensor) -> tensor<2x3x5xf32> { %shape = stablehlo.constant dense<[2, 3, 5]> : tensor<3xi64> - // expected-error@+1 {{operand #0 must be 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values, but got 'tensor>'}} + // expected-error@+1 {{operand #0 must be 0D tensor of pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type values, but got 'tensor>'}} %0 = "stablehlo.rng"(%a, %b, %shape) {rng_distribution = #stablehlo}: (tensor>, tensor, tensor<3xi64>) -> tensor<2x3x5xf32> func.return %0 : tensor<2x3x5xf32> } @@ -2828,7 +2828,7 @@ func.func @or_invalid_f32_type(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>) -> te // ----- func.func @floor_invalid_i32_type(%arg0: tensor<4xi32>) -> tensor<4xi32> { - // expected-error@+1 {{must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<4xi32>'}} + // expected-error@+1 {{must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<4xi32>'}} %0 = "stablehlo.floor"(%arg0) : (tensor<4xi32>) -> tensor<4xi32> func.return %0 : tensor<4xi32> } @@ -6137,7 +6137,7 @@ func.func @is_finite(%arg0: tensor<3xf32>) -> tensor<3xi1> { // ----- func.func @is_finite_int_input(%arg0: tensor<3xi32>) -> tensor<3xi1> { - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<3xi32>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<3xi32>'}} %0 = "stablehlo.is_finite"(%arg0) {} : (tensor<3xi32>) -> tensor<3xi1> func.return %0 : tensor<3xi1> } @@ -6185,6 +6185,22 @@ func.func @convert(%arg0: tensor) -> tensor { // ----- +// CHECK-LABEL: func @convert_f8e3m4 +func.func @convert_f8e3m4(%arg0: tensor) -> tensor { + %0 = "stablehlo.convert"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// ----- + +// CHECK-LABEL: func @convert_f8e4m3 +func.func @convert_f8e4m3(%arg0: tensor) -> tensor { + %0 = "stablehlo.convert"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// ----- + // CHECK-LABEL: func @convert_f8e4m3fn func.func @convert_f8e4m3fn(%arg0: tensor) -> tensor { %0 = "stablehlo.convert"(%arg0) : (tensor) -> tensor diff --git a/stablehlo/tests/ops_stablehlo_quantized.mlir b/stablehlo/tests/ops_stablehlo_quantized.mlir index cb4563ce9fc..89c8e4d00d0 100644 --- a/stablehlo/tests/ops_stablehlo_quantized.mlir +++ b/stablehlo/tests/ops_stablehlo_quantized.mlir @@ -380,7 +380,7 @@ func.func @while_per_tensor_quantization(%arg0: tensor<4x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of 2/4/8/16/32/64-bit signless integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of 2/4/8/16/32/64-bit signless integer or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %abs_neg = "stablehlo.abs"(%arg0) : (tensor<1x2x2x!quant.uniform:f32:0, {0.1:-30}>>) -> tensor<1x2x2x!quant.uniform:f32:0, {0.1:-30}>> func.return } @@ -388,7 +388,7 @@ func.func @negative_abs_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x4x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x4x!quant.uniform>'}} %all_gather = "stablehlo.all_gather"(%arg0) { all_gather_dim = 1 : i64, replica_groups = dense<[[0, 1]]> : tensor<1x2xi64> } : (tensor<2x4x!quant.uniform>) -> tensor<2x4x!quant.uniform> func.return } @@ -396,7 +396,7 @@ func.func @negative_all_gather_quantization(%arg0: tensor<2x4x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x4x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x4x!quant.uniform>'}} %all_to_all = "stablehlo.all_to_all"(%arg0) { split_dimension = 1 : i64, concat_dimension = 1 : i64, split_count = 2 : i64, replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>, channel_handle = #stablehlo.channel_handle} : (tensor<2x4x!quant.uniform>) -> tensor<2x4x!quant.uniform> func.return } @@ -404,7 +404,7 @@ func.func @negative_all_to_all_quantization(%arg0: tensor<2x4x!quant.uniform>, %arg1: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %atan2 = "stablehlo.atan2"(%arg0, %arg1) : (tensor<1x2x2x!quant.uniform>, tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -412,7 +412,7 @@ func.func @negative_atan_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %cbrt = "stablehlo.cbrt"(%arg0) : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -420,7 +420,7 @@ func.func @negative_bitcast_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %ceil = "stablehlo.ceil"(%arg0) : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -428,7 +428,7 @@ func.func @negative_ceil_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %cholesky = "stablehlo.cholesky"(%arg0) { lower = true } : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -437,7 +437,7 @@ func.func @negative_cholesky_quantization(%arg0: tensor<1x2x2x!quant.uniform>) -> tensor<1x!quant.uniform> { - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x!quant.uniform>'}} %0 = "stablehlo.clamp"(%arg0, %arg0, %arg0) : (tensor<1x!quant.uniform>, tensor<1x!quant.uniform>, tensor<1x!quant.uniform>) -> tensor<1x!quant.uniform> func.return %0: tensor<1x!quant.uniform> } @@ -445,7 +445,7 @@ func.func @negative_clamp_quantization(%arg0: tensor<1x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %collective_permute = "stablehlo.collective_permute"(%arg0) { source_target_pairs = dense<[[0, 1], [1, 2], [2, 3]]> : tensor<3x2xi64>, channel_handle = #stablehlo.channel_handle} : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -453,7 +453,7 @@ func.func @negative_collective_permute_quantization(%arg0: tensor<1x2x2x!quant.u // ----- func.func @negative_compare_quantization(%arg0: tensor<1x2x2x!quant.uniform>, %arg1: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %compare = "stablehlo.compare"(%arg0, %arg1) { comparison_direction = #stablehlo, compare_type = #stablehlo } : (tensor<1x2x2x!quant.uniform>, tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2xi1> func.return } @@ -461,7 +461,7 @@ func.func @negative_compare_quantization(%arg0: tensor<1x2x2x!quant.uniform>, %arg1: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %concatenate = "stablehlo.concatenate"(%arg0, %arg1) { dimension = 0 : i64 } : (tensor<1x2x2x!quant.uniform>, tensor<1x2x2x!quant.uniform>) -> tensor<2x2x2x!quant.uniform> func.return } @@ -469,7 +469,7 @@ func.func @negative_concatenate_quantization(%arg0: tensor<1x2x2x!quant.uniform< // ----- func.func @negative_cosine_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %cosine = "stablehlo.cosine"(%arg0) : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -477,7 +477,7 @@ func.func @negative_cosine_quantization(%arg0: tensor<1x2x2x!quant.uniform>, %arg1: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %divide = "stablehlo.divide"(%arg0, %arg1) : (tensor<1x2x2x!quant.uniform>, tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -485,7 +485,7 @@ func.func @negative_divide_quantization(%arg0: tensor<1x2x2x!quant.uniform>, %arg1: tensor, %arg2: tensor) -> tensor<1x4x!quant.uniform> { - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<3x4x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<3x4x!quant.uniform>'}} %0 = "stablehlo.dynamic_slice"(%arg0, %arg1, %arg2) {slice_sizes = array} : (tensor<3x4x!quant.uniform>, tensor, tensor) -> tensor<1x4x!quant.uniform> func.return %0 : tensor<1x4x!quant.uniform> } @@ -493,7 +493,7 @@ func.func @negative_dynamic_slice_quantization(%arg0: tensor<3x4x!quant.uniform< // ----- func.func @negative_exponential_minus_one_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %exponential_minus_one = "stablehlo.exponential_minus_one"(%arg0) : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -501,7 +501,7 @@ func.func @negative_exponential_minus_one_quantization(%arg0: tensor<1x2x2x!quan // ----- func.func @negative_exponential_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %exponential_minus_one = "stablehlo.exponential"(%arg0) : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -509,7 +509,7 @@ func.func @negative_exponential_quantization(%arg0: tensor<1x2x2x!quant.uniform< // ----- func.func @negative_floor_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %floor = "stablehlo.floor"(%arg0) : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -517,7 +517,7 @@ func.func @negative_floor_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %is_finite = "stablehlo.is_finite"(%arg0) {} : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2xi1> func.return } @@ -525,7 +525,7 @@ func.func @negative_floor_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %log_plus_one = "stablehlo.log_plus_one"(%arg0) : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -533,7 +533,7 @@ func.func @negative_log_plus_one_quantization(%arg0: tensor<1x2x2x!quant.uniform // ----- func.func @negative_logistic_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %logistic = "stablehlo.logistic"(%arg0) : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -541,7 +541,7 @@ func.func @negative_logistic_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %log = "stablehlo.log"(%arg0) : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -549,7 +549,7 @@ func.func @negative_log_quantization(%arg0: tensor<1x2x2x!quant.uniform>, %arg1: tensor<4x!quant.uniform>) -> tensor<4x!quant.uniform> { - // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<4x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<4x!quant.uniform>'}} %map = "stablehlo.map"(%arg0, %arg1) ({ ^bb0(%arg2: tensor>, %arg3: tensor>): "stablehlo.return"(%arg2) : (tensor>) -> () @@ -560,7 +560,7 @@ func.func @negative_map_quantization(%arg0: tensor<4x!quant.uniform>, %arg1: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %maximum = "stablehlo.maximum"(%arg0, %arg1) : (tensor<1x2x2x!quant.uniform>, tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -568,7 +568,7 @@ func.func @negative_maximum_quantization(%arg0: tensor<1x2x2x!quant.uniform>, %arg1: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %minimum = "stablehlo.minimum"(%arg0, %arg1) : (tensor<1x2x2x!quant.uniform>, tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -576,7 +576,7 @@ func.func @negative_minimum_quantization(%arg0: tensor<1x2x2x!quant.uniform>, %arg1: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %multiply = "stablehlo.multiply"(%arg0, %arg1) : (tensor<1x2x2x!quant.uniform>, tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -584,7 +584,7 @@ func.func @negative_multiply_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %negate = "stablehlo.negate"(%arg0) : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -592,14 +592,14 @@ func.func @negative_negate_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or token, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values or token, but got 'tensor<1x2x2x!quant.uniform>'}} %optimization_barrier = "stablehlo.optimization_barrier"(%arg0) : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } // ----- func.func @negative_pad_quantization(%arg0: tensor<1x2x3x!quant.uniform>, %arg1: tensor>) -> tensor<2x4x7x!quant.uniform> { - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x3x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x3x!quant.uniform>'}} %pad = "stablehlo.pad"(%arg0, %arg1) { edge_padding_low = array, edge_padding_high = array, @@ -611,7 +611,7 @@ func.func @negative_pad_quantization(%arg0: tensor<1x2x3x!quant.uniform>, %arg1: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %power = "stablehlo.power"(%arg0, %arg1) : (tensor<1x2x2x!quant.uniform>, tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -619,7 +619,7 @@ func.func @negative_power_quantization(%arg0: tensor<1x2x2x!quant.uniform>, %arg1: tensor>) -> tensor> { - // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<16x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<16x!quant.uniform>'}} %reduce = "stablehlo.reduce"(%arg0, %arg1) ({ ^bb0(%arg2: tensor>, %arg3: tensor>): %1 = "stablehlo.add"(%arg2, %arg3) : (tensor>, tensor>) -> tensor> @@ -633,7 +633,7 @@ func.func @reduce_quantization(%arg0: tensor<16x!quant.uniform>, %arg1: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %remainder = "stablehlo.remainder"(%arg0, %arg1) : (tensor<1x2x2x!quant.uniform>, tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -641,7 +641,7 @@ func.func @negative_remainder_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %rsqrt = "stablehlo.rsqrt"(%arg0) : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -649,7 +649,7 @@ func.func @negative_rsqrt_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %sine = "stablehlo.sine"(%arg0) : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -657,7 +657,7 @@ func.func @negative_sine_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %sqrt = "stablehlo.sqrt"(%arg0) : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -665,7 +665,7 @@ func.func @negative_sqrt_quantization(%arg0: tensor<1x2x2x!quant.uniform>, %arg1: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %subtract = "stablehlo.subtract"(%arg0, %arg1) : (tensor<1x2x2x!quant.uniform>, tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -673,7 +673,7 @@ func.func @negative_subtract_quantization(%arg0: tensor<1x2x2x!quant.uniform>){ - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<1x2x2x!quant.uniform>'}} %tanh = "stablehlo.tanh"(%arg0) : (tensor<1x2x2x!quant.uniform>) -> tensor<1x2x2x!quant.uniform> func.return } @@ -681,7 +681,7 @@ func.func @negative_tanh_quantization(%arg0: tensor<1x2x2x!quant.uniform>, %scale: tensor<2x!quant.uniform>, %mean: tensor<2x!quant.uniform>, %variance: tensor<2x!quant.uniform>, %grad_output: tensor<2x2x2x2x!quant.uniform>) -> tensor<2x2x2x2x!quant.uniform> { - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x2x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x2x2x2x!quant.uniform>'}} %0:3 = "stablehlo.batch_norm_grad" (%input, %scale, %mean, %variance, %grad_output) {epsilon = 0.001 : f32, feature_index = 0 : i64} : (tensor<2x2x2x2x!quant.uniform>, tensor<2x!quant.uniform>, tensor<2x!quant.uniform>, tensor<2x!quant.uniform>, tensor<2x2x2x2x!quant.uniform>) -> (tensor<2x2x2x2x!quant.uniform>, tensor<2x!quant.uniform>, tensor<2x!quant.uniform>) @@ -691,7 +691,7 @@ func.func @negative_batch_norm_grad_quantization(%input: tensor<2x2x2x2x!quant.u // ----- func.func @negative_batch_norm_inference_quantization(%input: tensor<4x256x!quant.uniform>, %scale: tensor<256x!quant.uniform>, %offset: tensor<256x!quant.uniform>, %mean: tensor<256x!quant.uniform>, %variance: tensor<256x!quant.uniform>) -> (tensor<4x256x!quant.uniform>) { - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<4x256x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<4x256x!quant.uniform>'}} %0 = "stablehlo.batch_norm_inference" (%input, %scale, %offset, %mean, %variance) { epsilon = 1.001000e-05 : f32, feature_index = 1 : i64 @@ -701,7 +701,7 @@ func.func @negative_batch_norm_inference_quantization(%input: tensor<4x256x!quan // ----- func.func @negative_batch_norm_training_quantization(%input: tensor<2x2x2x2x!quant.uniform>, %scale: tensor<2x!quant.uniform>, %offset: tensor<2x!quant.uniform>) -> tensor<2x2x2x2x!quant.uniform> { - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x2x2x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x2x2x2x!quant.uniform>'}} %0:3 = "stablehlo.batch_norm_training" (%input, %scale, %offset) { epsilon = 0.001 : f32, feature_index = 1 : i64 @@ -712,7 +712,7 @@ func.func @negative_batch_norm_training_quantization(%input: tensor<2x2x2x2x!qua // ----- func.func @negative_dot_general_quantization(%arg0: tensor<2x3x4x!quant.uniform>, %arg1: tensor<2x3x5x!quant.uniform>) -> tensor<2x4x5x!quant.uniform> { - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x3x4x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x3x4x!quant.uniform>'}} %0 = "stablehlo.dot_general"(%arg0, %arg1) { dot_dimension_numbers = #stablehlo.dot< lhs_batching_dimensions = [0], @@ -727,7 +727,7 @@ func.func @negative_dot_general_quantization(%arg0: tensor<2x3x4x!quant.uniform< // ----- func.func @negative_dynamic_update_slice_pertensor_quantization(%operand: tensor<3x4x!quant.uniform>, %update: tensor<1x4x!quant.uniform>, %start_indices0: tensor, %start_indices1: tensor) -> tensor<3x4x!quant.uniform> { - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<3x4x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<3x4x!quant.uniform>'}} %0 = "stablehlo.dynamic_update_slice"(%operand, %update, %start_indices0, %start_indices1) : (tensor<3x4x!quant.uniform>, tensor<1x4x!quant.uniform>, tensor, tensor) -> tensor<3x4x!quant.uniform> func.return %0 : tensor<3x4x!quant.uniform> } @@ -735,7 +735,7 @@ func.func @negative_dynamic_update_slice_pertensor_quantization(%operand: tensor // ----- func.func @negative_gather_quantization(%operand : tensor<*x!quant.uniform>, %start_indices : tensor<1x5x2xi32>) -> tensor<8x?x7x1x6x1x?x!quant.uniform> { - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<*x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<*x!quant.uniform>'}} %res = "stablehlo.gather"(%operand, %start_indices) { dimension_numbers = #stablehlo.gather< offset_dims = [0, 2, 3, 4, 5], @@ -752,7 +752,7 @@ func.func @negative_gather_quantization(%operand : tensor<*x!quant.uniform>) -> tensor<6x!quant.uniform> { - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<6x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<6x!quant.uniform>'}} %output = "stablehlo.reduce_precision"(%arg0) { exponent_bits = 5 : i32, mantissa_bits = 10 : i32 @@ -763,7 +763,7 @@ func.func @negative_reduce_precision_quantization(%arg0: tensor<6x!quant.uniform // ----- func.func @negative_reduce_scatter_quantization(%data: tensor<4x16x!quant.uniform>) -> tensor<4x4x!quant.uniform> { - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<4x16x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<4x16x!quant.uniform>'}} %0 = "stablehlo.reduce_scatter"(%data) ({ ^bb0(%arg2: tensor>, %arg3: tensor>): %1 = stablehlo.add %arg2, %arg3 : tensor> @@ -778,7 +778,7 @@ func.func @negative_reduce_scatter_quantization(%data: tensor<4x16x!quant.unifor // ----- func.func @negative_reduce_window_quantization(%arg0: tensor<2x17x31x7x!quant.uniform>, %arg1: tensor>) -> tensor<2x9x16x7x!quant.uniform> { - // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x17x31x7x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x17x31x7x!quant.uniform>'}} %0 = "stablehlo.reduce_window"(%arg0, %arg1) ({ ^bb0(%arg2: tensor>, %arg3: tensor>): %1 = "stablehlo.maximum"(%arg2, %arg3) : (tensor>, tensor>) -> tensor> @@ -796,7 +796,7 @@ func.func @negative_reduce_window_quantization(%arg0: tensor<2x17x31x7x!quant.un // ----- func.func @negative_reverse_quantization(%operand: tensor<3x2x!quant.uniform>) -> tensor<3x2x!quant.uniform> { - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<3x2x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<3x2x!quant.uniform>'}} %result = "stablehlo.reverse"(%operand) { dimensions = array } : (tensor<3x2x!quant.uniform>) -> tensor<3x2x!quant.uniform> @@ -806,7 +806,7 @@ func.func @negative_reverse_quantization(%operand: tensor<3x2x!quant.uniform>) -> tensor<2x!quant.uniform> { - // expected-error@+1 {{ operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x!quant.uniform>'}} + // expected-error@+1 {{ operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x!quant.uniform>'}} %0 = "stablehlo.round_nearest_afz"(%arg0) {} : (tensor<2x!quant.uniform>) -> tensor<2x!quant.uniform> func.return %0 : tensor<2x!quant.uniform> } @@ -814,7 +814,7 @@ func.func @negative_round_afz(%arg0: tensor<2x!quant.uniform>) -> tensor<2x!quant.uniform> { - // expected-error@+1 {{ operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x!quant.uniform>'}} + // expected-error@+1 {{ operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x!quant.uniform>'}} %0 = "stablehlo.round_nearest_even"(%arg0) {} : (tensor<2x!quant.uniform>) -> tensor<2x!quant.uniform> func.return %0 : tensor<2x!quant.uniform> } @@ -822,7 +822,7 @@ func.func @negative_round_even(%arg0: tensor<2x!quant.uniform>, %arg1: tensor<10x2xi32>, %arg2: tensor<10x300x!quant.uniform>) -> tensor<200x100x300x!quant.uniform> { - // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<200x100x300x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<200x100x300x!quant.uniform>'}} %0 = "stablehlo.scatter"(%arg0, %arg1, %arg2) ({ ^bb0(%arg3: tensor>, %arg4: tensor>): %1 = "stablehlo.add"(%arg3, %arg4) : (tensor>, tensor>) -> tensor> @@ -841,7 +841,7 @@ func.func @negative_scatter_quantization(%arg0: tensor<200x100x300x!quant.unifor // ----- func.func @negative_select_quantization(%arg0: tensor<2x3xi1>, %arg1: tensor<2x3x!quant.uniform>, %arg2: tensor<2x3x!quant.uniform>) -> tensor<2x3x!quant.uniform> { - // expected-error@+1 {{operand #1 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x3x!quant.uniform>'}} + // expected-error@+1 {{operand #1 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<2x3x!quant.uniform>'}} %0 = "stablehlo.select"(%arg0, %arg1, %arg2) : (tensor<2x3xi1>, tensor<2x3x!quant.uniform>, tensor<2x3x!quant.uniform>) -> tensor<2x3x!quant.uniform> func.return %0 : tensor<2x3x!quant.uniform> } @@ -849,7 +849,7 @@ func.func @negative_select_quantization(%arg0: tensor<2x3xi1>, %arg1: tensor<2x3 // ----- func.func @negative_slice_quantization(%arg0: tensor<3x4x!quant.uniform>) -> tensor<1x2x!quant.uniform> { - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<3x4x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<3x4x!quant.uniform>'}} %0 = "stablehlo.slice"(%arg0) {start_indices = array, limit_indices = array, strides = array} : (tensor<3x4x!quant.uniform>) -> tensor<1x2x!quant.uniform> func.return %0 : tensor<1x2x!quant.uniform> } @@ -858,7 +858,7 @@ func.func @negative_slice_quantization(%arg0: tensor<3x4x!quant.uniform>, %input1: tensor<16x16x!quant.uniform>) { - // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<16x16x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be variadic of ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<16x16x!quant.uniform>'}} %0:2 = "stablehlo.sort"(%input0, %input1) ({ ^bb0(%arg0: tensor>, %arg1: tensor>, %arg2: tensor>, %arg3: tensor>): %7 = "stablehlo.compare"(%arg0, %arg1) {comparison_direction = #stablehlo} : (tensor>, tensor>) -> tensor @@ -870,7 +870,7 @@ func.func @negative_sort_quantization(%input0: tensor<16x16x!quant.uniform>, %arg1: tensor<10x23x23x64x!quant.uniform>, %arg2: tensor>) -> tensor<10x24x24x64x!quant.uniform> { - // expected-error@+1 {{operand #0 must be ranked tensor of f8E4M3B11FNUZ type or f8E4M3FN type or f8E4M3FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<10x24x24x64x!quant.uniform>'}} + // expected-error@+1 {{operand #0 must be ranked tensor of f8E3M4 type or f8E4M3 type or f8E4M3FN type or f8E4M3FNUZ type or f8E4M3B11FNUZ type or f8E5M2 type or f8E5M2FNUZ type or 16-bit float or 32-bit float or 64-bit float or bfloat16 type or pred (AKA boolean or 1-bit integer) or 2/4/8/16/32/64-bit signless integer or 2/4/8/16/32/64-bit unsigned integer or complex type with 32-bit float or 64-bit float elements or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer values, but got 'tensor<10x24x24x64x!quant.uniform>'}} %0 = "stablehlo.select_and_scatter"(%arg0, %arg1, %arg2) ({ ^bb0(%arg3: tensor>, %arg4: tensor>): %1 = "stablehlo.compare"(%arg3, %arg4) {compare_type = #stablehlo, comparison_direction = #stablehlo} : (tensor>, tensor>) -> tensor diff --git a/stablehlo/tests/ops_stablehlo_roundtrip.mlir b/stablehlo/tests/ops_stablehlo_roundtrip.mlir index b6da68f9539..ab11c086f1d 100644 --- a/stablehlo/tests/ops_stablehlo_roundtrip.mlir +++ b/stablehlo/tests/ops_stablehlo_roundtrip.mlir @@ -183,7 +183,9 @@ func.func @test_constants() { %cst_4 = arith.constant dense<[[1, 2], [3, 4]]> : tensor<2x2xi32> %cst_5 = arith.constant dense<[[3, 2], [1, 4]]> : tensor<2x2xi32> %cst_6 = arith.constant dense<[[1, 2], [4, 8]]> : tensor<2x2xui32> + %cst_17 = arith.constant dense<[1.0, 2.0, 3.0, 4.0]> : tensor<4xf8E3M4> %cst_7 = arith.constant dense<[1.0, 2.0, 3.0, 4.0]> : tensor<4xf8E4M3B11FNUZ> + %cst_16 = arith.constant dense<[1.0, 2.0, 3.0, 4.0]> : tensor<4xf8E4M3> %cst_8 = arith.constant dense<[1.0, 2.0, 3.0, 4.0]> : tensor<4xf8E4M3FN> %cst_9 = arith.constant dense<[1.0, 2.0, 3.0, 4.0]> : tensor<4xf8E4M3FNUZ> %cst_10 = arith.constant dense<[1.0, 2.0, 3.0, 4.0]> : tensor<4xf8E5M2> diff --git a/stablehlo/tests/vhlo/stablehlo_legalize_to_vhlo.1_7_0.mlir b/stablehlo/tests/vhlo/stablehlo_legalize_to_vhlo.1_7_0.mlir new file mode 100644 index 00000000000..0837fa20181 --- /dev/null +++ b/stablehlo/tests/vhlo/stablehlo_legalize_to_vhlo.1_7_0.mlir @@ -0,0 +1,2904 @@ +// RUN: stablehlo-opt --mlir-print-op-generic %s.bc | FileCheck %s +// RUN: stablehlo-translate --deserialize %s.bc | stablehlo-translate --serialize --target=1.7.0 | stablehlo-opt --mlir-print-op-generic | FileCheck %s +// RUN: stablehlo-translate --deserialize %s.bc | stablehlo-opt > %t.0 +// RUN: stablehlo-opt --strip-debuginfo %s > %t.1 +// RUN: diff %t.0 %t.1 +// RUN: stablehlo-translate --serialize --target=1.7.0 --strip-debuginfo %s > %t.2 +// RUN: diff %s.bc %t.2 +// RUN: stablehlo-opt --stablehlo-legalize-to-vhlo -emit-bytecode -debug-only=vhlo-bytecode %s 2>&1 | FileCheck --check-prefix=CHECK-WARN %s +// RUN: stablehlo-opt --stablehlo-legalize-to-vhlo -emit-bytecode %s | stablehlo-opt -debug-only=vhlo-bytecode 2>&1 | FileCheck --check-prefix=CHECK-WARN %s + +// CHECK-WARN-NOT: Not Implemented + +// ============ ATTRIBUTES ============ + +// CHECK-LABEL: "attr_comparison_direction_eq" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_comparison_direction_eq(%arg0: tensor, %arg1: tensor) -> tensor { + %0 = "stablehlo.compare"(%arg0, %arg1) { + // CHECK: comparison_direction = #vhlo + comparison_direction = #stablehlo + } : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "attr_comparison_direction_ne" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_comparison_direction_ne(%arg0: tensor, %arg1: tensor) -> tensor { + %0 = "stablehlo.compare"(%arg0, %arg1) { + // CHECK: comparison_direction = #vhlo + comparison_direction = #stablehlo + } : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "attr_comparison_direction_ge" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_comparison_direction_ge(%arg0: tensor, %arg1: tensor) -> tensor { + %0 = "stablehlo.compare"(%arg0, %arg1) { + // CHECK: comparison_direction = #vhlo + comparison_direction = #stablehlo + } : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "attr_comparison_direction_gt" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_comparison_direction_gt(%arg0: tensor, %arg1: tensor) -> tensor { + %0 = "stablehlo.compare"(%arg0, %arg1) { + // CHECK: comparison_direction = #vhlo + comparison_direction = #stablehlo + } : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "attr_comparison_direction_le" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_comparison_direction_le(%arg0: tensor, %arg1: tensor) -> tensor { + %0 = "stablehlo.compare"(%arg0, %arg1) { + // CHECK: comparison_direction = #vhlo + comparison_direction = #stablehlo + } : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "attr_comparison_direction_lt" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_comparison_direction_lt(%arg0: tensor, %arg1: tensor) -> tensor { + %0 = "stablehlo.compare"(%arg0, %arg1) { + // CHECK: comparison_direction = #vhlo + comparison_direction = #stablehlo + } : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "attr_comparison_type_notype" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_comparison_type_notype(%arg0: tensor, %arg1: tensor) -> tensor { + %0 = "stablehlo.compare"(%arg0, %arg1) { + comparison_direction = #stablehlo + // CHECK: compare_type = #vhlo + } : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "attr_comparison_type_float" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_comparison_type_float(%arg0: tensor, %arg1: tensor) -> tensor { + %0 = "stablehlo.compare"(%arg0, %arg1) { + comparison_direction = #stablehlo, + // CHECK: compare_type = #vhlo, + compare_type = #stablehlo + } : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "attr_comparison_type_totalorder" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_comparison_type_totalorder(%arg0: tensor, %arg1: tensor) -> tensor { + %0 = "stablehlo.compare"(%arg0, %arg1) { + comparison_direction = #stablehlo, + // CHECK: compare_type = #vhlo, + compare_type = #stablehlo + } : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "attr_comparison_type_signed" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_comparison_type_signed(%arg0: tensor, %arg1: tensor) -> tensor { + %0 = "stablehlo.compare"(%arg0, %arg1) { + comparison_direction = #stablehlo, + // CHECK: compare_type = #vhlo, + compare_type = #stablehlo + } : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "attr_comparison_type_unsigned" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_comparison_type_unsigned(%arg0: tensor, %arg1: tensor) -> tensor { + %0 = "stablehlo.compare"(%arg0, %arg1) { + comparison_direction = #stablehlo, + // CHECK: compare_type = #vhlo, + compare_type = #stablehlo + } : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// ConvDimensionNumbers aka #stablehlo.conv is covered below. + +// CHECK-LABEL: "attr_custom_call_api_version_unspecified" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @attr_custom_call_api_version_unspecified(%arg0: tensor) -> tensor { + %0 = "stablehlo.custom_call"(%arg0) { + call_target_name = "foo", + // CHECK: api_version = #vhlo + api_version = 0 : i32 + } : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "attr_custom_call_api_version_original" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @attr_custom_call_api_version_original(%arg0: tensor) -> tensor { + %0 = "stablehlo.custom_call"(%arg0) { + call_target_name = "foo", + // CHECK: api_version = #vhlo + api_version = 1 : i32 + } : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "attr_custom_call_api_version_status_returning" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @attr_custom_call_api_version_status_returning(%arg0: tensor) -> tensor { + %0 = "stablehlo.custom_call"(%arg0) { + call_target_name = "foo", + // CHECK: api_version = #vhlo + api_version = 2 : i32 + } : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "attr_custom_call_api_version_status_returning_unified" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @attr_custom_call_api_version_status_returning_unified(%arg0: tensor) -> tensor { + %0 = "stablehlo.custom_call"(%arg0) { + call_target_name = "foo", + // CHECK: api_version = #vhlo + api_version = 3 : i32 + } : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "attr_dict" +// CHECK: #vhlo.dict_v1<{#vhlo.string_v1<"attr1"> = #vhlo.integer_v1<1 : i32>, #vhlo.string_v1<"attr2"> = #vhlo.integer_v1<2 : i32>} +func.func @attr_dict() attributes {stablehlo.attr = {attr1 = 1 : i32, attr2 = 2 : i32}} { + return +} + +// CHECK-LABEL: "attr_custom_call_api_version_typed_ffi" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +// CHECK: api_version = #vhlo +// CHECK-SAME: backend_config = #vhlo.dict_v1<{#vhlo.string_v1<"bar"> = #vhlo.integer_v1<42 : i32>}> +func.func @attr_custom_call_api_version_typed_ffi(%arg0: tensor) -> tensor { + %0 = "stablehlo.custom_call"(%arg0) { + call_target_name = "foo", + backend_config= {bar = 42 : i32}, + api_version = 4 : i32 + } : (tensor) -> tensor + func.return %0 : tensor +} + + +// CHECK-LABEL: "attr_custom_call_api_version_typed_ffi_no_backend_config" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +// CHECK: api_version = #vhlo +// CHECK-SAME: backend_config = #vhlo.dict_v1<{}> +func.func @attr_custom_call_api_version_typed_ffi_no_backend_config(%arg0: tensor) -> tensor { + %0 = "stablehlo.custom_call"(%arg0) { + call_target_name = "foo", + api_version = 4 : i32 + } : (tensor) -> tensor + func.return %0 : tensor +} + +// DotDimensionNumbers aka #stablehlo.dot is covered below. + +// CHECK-LABEL: "attr_fft_type_fft" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @attr_fft_type_fft(%arg0: tensor<16xcomplex>) -> tensor<16xcomplex> { + %0 = "stablehlo.fft"(%arg0) { + // CHECK: fft_type = #vhlo + fft_type = #stablehlo, + fft_length = array + } : (tensor<16xcomplex>) -> tensor<16xcomplex> + func.return %0 : tensor<16xcomplex> +} + +// CHECK-LABEL: "attr_fft_type_ifft" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @attr_fft_type_ifft(%arg0: tensor<16xcomplex>) -> tensor<16xcomplex> { + %0 = "stablehlo.fft"(%arg0) { + // CHECK: fft_type = #vhlo + fft_type = #stablehlo, + fft_length = array + } : (tensor<16xcomplex>) -> tensor<16xcomplex> + func.return %0 : tensor<16xcomplex> +} + +// CHECK-LABEL: "attr_fft_type_rfft" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @attr_fft_type_rfft(%arg0: tensor<16xf32>) -> tensor<9xcomplex> { + %0 = "stablehlo.fft"(%arg0) { + // CHECK: fft_type = #vhlo + fft_type = #stablehlo, + fft_length = array + } : (tensor<16xf32>) -> tensor<9xcomplex> + func.return %0 : tensor<9xcomplex> +} + +// CHECK-LABEL: "attr_fft_type_irfft" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @attr_fft_type_irfft(%arg0: tensor<9xcomplex>) -> tensor<16xf32> { + %0 = "stablehlo.fft"(%arg0) { + // CHECK: fft_type = #vhlo + fft_type = #stablehlo, + fft_length = array + } : (tensor<9xcomplex>) -> tensor<16xf32> + func.return %0 : tensor<16xf32> +} + +// GatherDimensionNumbers aka #stablehlo.gather is covered below. + +// CHECK-LABEL: "attr_precision_config_default" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_precision_config_default(%arg0: tensor<8x16xf32>, %arg1: tensor<16x8xf32>) -> tensor<8x8xf32> { + %0 = "stablehlo.dot"(%arg0, %arg1) { + // CHECK: precision_config = #vhlo.array_v1<[#vhlo, #vhlo]> + } : (tensor<8x16xf32>, tensor<16x8xf32>) -> tensor<8x8xf32> + func.return %0 : tensor<8x8xf32> +} + +// CHECK-LABEL: "attr_precision_config_high" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_precision_config_high(%arg0: tensor<8x16xf32>, %arg1: tensor<16x8xf32>) -> tensor<8x8xf32> { + %0 = "stablehlo.dot"(%arg0, %arg1) { + // CHECK: precision_config = #vhlo.array_v1<[#vhlo, #vhlo]> + precision_config = [#stablehlo, #stablehlo] + } : (tensor<8x16xf32>, tensor<16x8xf32>) -> tensor<8x8xf32> + func.return %0 : tensor<8x8xf32> +} + +// CHECK-LABEL: "attr_precision_config_highest" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_precision_config_highest(%arg0: tensor<8x16xf32>, %arg1: tensor<16x8xf32>) -> tensor<8x8xf32> { + %0 = "stablehlo.dot"(%arg0, %arg1) { + // CHECK: precision_config = #vhlo.array_v1<[#vhlo, #vhlo]> + precision_config = [#stablehlo, #stablehlo] + } : (tensor<8x16xf32>, tensor<16x8xf32>) -> tensor<8x8xf32> + func.return %0 : tensor<8x8xf32> +} + +// CHECK-LABEL: "attr_rng_algorithm_default" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @attr_rng_algorithm_default(%arg0: tensor) -> (tensor, tensor) { + %0:2 = "stablehlo.rng_bit_generator"(%arg0) { + // CHECK: rng_algorithm = #vhlo + rng_algorithm = #stablehlo + } : (tensor) -> (tensor, tensor) + func.return %0#0, %0#1 : tensor, tensor +} + +// CHECK-LABEL: "attr_rng_algorithm_three_fry" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @attr_rng_algorithm_three_fry(%arg0: tensor) -> (tensor, tensor) { + %0:2 = "stablehlo.rng_bit_generator"(%arg0) { + // CHECK: rng_algorithm = #vhlo + rng_algorithm = #stablehlo + } : (tensor) -> (tensor, tensor) + func.return %0#0, %0#1 : tensor, tensor +} + +// CHECK-LABEL: "attr_rng_algorithm_philox" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @attr_rng_algorithm_philox(%arg0: tensor) -> (tensor, tensor) { + %0:2 = "stablehlo.rng_bit_generator"(%arg0) { + // CHECK: rng_algorithm = #vhlo + rng_algorithm = #stablehlo + } : (tensor) -> (tensor, tensor) + func.return %0#0, %0#1 : tensor, tensor +} + +// CHECK-LABEL: "attr_rng_distribution_uniform" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @attr_rng_distribution_uniform(%arg0: tensor, %arg1: tensor, %arg2: tensor<0xindex>) -> tensor { + %0 = "stablehlo.rng"(%arg0, %arg1, %arg2) { + // CHECK: rng_distribution = #vhlo + rng_distribution = #stablehlo + } : (tensor, tensor, tensor<0xindex>) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "attr_rng_distribution_normal" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @attr_rng_distribution_normal(%arg0: tensor, %arg1: tensor, %arg2: tensor<0xindex>) -> tensor { + %0 = "stablehlo.rng"(%arg0, %arg1, %arg2) { + // CHECK: rng_distribution = #vhlo + rng_distribution = #stablehlo + } : (tensor, tensor, tensor<0xindex>) -> tensor + func.return %0 : tensor +} + +// ScatterDimensionNumbers aka #stablehlo.scatter is covered below. + +// CHECK-LABEL: "attr_transpose_no_transpose" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_transpose_no_transpose(%arg0: tensor<16x16xf32>, %arg1: tensor<16x16xf32>) -> tensor<16x16xf32> { + %0 = "stablehlo.triangular_solve"(%arg0, %arg1) { + left_side = true, + lower = true, + unit_diagonal = true, + // transpose_a = #vhlo, + transpose_a = #stablehlo + } : (tensor<16x16xf32>, tensor<16x16xf32>) -> tensor<16x16xf32> + func.return %0 : tensor<16x16xf32> +} + +// CHECK-LABEL: "attr_transpose_transpose" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_transpose_transpose(%arg0: tensor<16x16xf32>, %arg1: tensor<16x16xf32>) -> tensor<16x16xf32> { + %0 = "stablehlo.triangular_solve"(%arg0, %arg1) { + left_side = true, + lower = true, + unit_diagonal = true, + // transpose_a = #vhlo, + transpose_a = #stablehlo + } : (tensor<16x16xf32>, tensor<16x16xf32>) -> tensor<16x16xf32> + func.return %0 : tensor<16x16xf32> +} + +// CHECK-LABEL: "attr_transpose_adjoint" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @attr_transpose_adjoint(%arg0: tensor<16x16xf32>, %arg1: tensor<16x16xf32>) -> tensor<16x16xf32> { + %0 = "stablehlo.triangular_solve"(%arg0, %arg1) { + left_side = true, + lower = true, + unit_diagonal = true, + // transpose_a = #vhlo, + transpose_a = #stablehlo + } : (tensor<16x16xf32>, tensor<16x16xf32>) -> tensor<16x16xf32> + func.return %0 : tensor<16x16xf32> +} + +// TypeExtensionsAttr aka #stablehlo.type_extensions is covered below. + +// CHECK-LABEL: "attr_type_extensions_bounds" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @attr_type_extensions_bounds(%arg0: tensor>) -> tensor> { + // CHECK: "vhlo.return_v1"(%[[ARG0]]) : (!vhlo.tensor_v1>) -> () + func.return %arg0 : tensor> +} + + +// ============ DEFAULTS ============ + +// CHECK-LABEL: "default_all_gather" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @default_all_gather(%arg0: tensor<16x8xf32>) -> tensor<16x16xf32> { + // CHECK: "vhlo.all_gather_v2"(%[[ARG0]]) <{ + // CHECK-SAME: all_gather_dim = #vhlo.integer_v1<1 : i64> + // CHECK-SAME: channel_id = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME{LITERAL}: replica_groups = #vhlo.tensor_v1 : tensor<2x1xi64>>, + // CHECK-SAME: use_global_device_ids = #vhlo.bool_v1 + // CHECK-SAME: }> : (!vhlo.tensor_v1<16x8x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x16x!vhlo.f32_v1> + %0 = "stablehlo.all_gather"(%arg0) { + all_gather_dim = 1 : i64, + replica_groups = dense<[[0], [1]]> : tensor<2x1xi64> + } : (tensor<16x8xf32>) -> tensor<16x16xf32> + func.return %0 : tensor<16x16xf32> +} + +// CHECK-LABEL: "default_all_gather_variadic" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @default_all_gather_variadic(%arg0: tensor<16x8xf32>, %arg1: tensor<16x8xf32>) -> (tensor<16x16xf32>, tensor<16x16xf32>) { + %0:2 = "stablehlo.all_gather"(%arg0, %arg1) { + all_gather_dim = 1 : i64, + replica_groups = dense<[[0], [1]]> : tensor<2x1xi64> + } : (tensor<16x8xf32>, tensor<16x8xf32>) -> (tensor<16x16xf32>, tensor<16x16xf32>) + func.return %0#0, %0#1 : tensor<16x16xf32>, tensor<16x16xf32> +} + +// CHECK-LABEL: "default_all_reduce" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @default_all_reduce(%arg0: tensor) -> tensor { + // CHECK: "vhlo.all_reduce_v2"(%[[ARG0]]) + // CHECK-SAME: <{ + // CHECK-SAME: channel_id = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME{LITERAL}: replica_groups = #vhlo.tensor_v1 : tensor<2x1xi64>>, + // CHECK-SAME: use_global_device_ids = #vhlo.bool_v1 + // CHECK-SAME: }> ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG1:arg.*]]: !vhlo.tensor_v1, %[[ARG2:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: %[[VAL1:.*]] = "vhlo.add_v1"(%[[ARG1]], %[[ARG2]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + // CHECK-NEXT: "vhlo.return_v1"(%[[VAL1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + + %0 = "stablehlo.all_reduce"(%arg0) ({ + ^bb0(%arg1: tensor, %arg2: tensor): + %1 = "stablehlo.add"(%arg1, %arg2) : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }) { + replica_groups = dense<[[0], [1]]> : tensor<2x1xi64> + } : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "default_all_to_all" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @default_all_to_all(%arg0: tensor<4x16xf32>) -> tensor<16x4xf32> { + // CHECK: "vhlo.all_to_all_v2"(%[[ARG0]]) <{ + // CHECK-SAME: channel_id = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME: concat_dimension = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME{LITERAL}: replica_groups = #vhlo.tensor_v1 : tensor<1x4xi64>>, + // CHECK-SAME: split_count = #vhlo.integer_v1<4 : i64> + // CHECK-SAME: split_dimension = #vhlo.integer_v1<1 : i64> + // CHECK-SAME: }> : (!vhlo.tensor_v1<4x16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x4x!vhlo.f32_v1> + %0 = "stablehlo.all_to_all"(%arg0) { + split_dimension = 1 : i64, + concat_dimension = 0 : i64, + split_count = 4 : i64, + replica_groups = dense<[[0, 1, 2, 3]]> : tensor<1x4xi64> + } : (tensor<4x16xf32>) -> tensor<16x4xf32> + func.return %0 : tensor<16x4xf32> +} + +// CHECK-LABEL: "default_all_to_all_variadic" +func.func @default_all_to_all_variadic(%arg0: tensor<4x16xf32>, %arg1: tensor<5x16xf32>) -> (tensor<16x4xf32>, tensor<20x4xf32>) { + %0:2 = "stablehlo.all_to_all"(%arg0, %arg1) { + split_dimension = 1 : i64, + concat_dimension = 0 : i64, + split_count = 4 : i64, + replica_groups = dense<[[0, 1, 2, 3]]> : tensor<1x4xi64>, + channel_handle = #stablehlo.channel_handle + } : (tensor<4x16xf32>, tensor<5x16xf32>) -> (tensor<16x4xf32>, tensor<20x4xf32>) + func.return %0#0, %0#1 : tensor<16x4xf32>, tensor<20x4xf32> +} + +// CHECK-LABEL: "default_cholesky" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @default_cholesky(%arg0: tensor<1x16x16xf32>) -> tensor<1x16x16xf32> { + // CHECK: "vhlo.cholesky_v1"(%[[ARG0]]) <{ + // CHECK-SAME: lower = #vhlo.bool_v1 + // CHECK-SAME: }> : (!vhlo.tensor_v1<1x16x16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<1x16x16x!vhlo.f32_v1> + %0 = "stablehlo.cholesky"(%arg0) : (tensor<1x16x16xf32>) -> tensor<1x16x16xf32> + func.return %0 : tensor<1x16x16xf32> +} + +// CHECK-LABEL: "default_collective_permute" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @default_collective_permute(%arg0: tensor<16x8xf32>) -> tensor<16x8xf32> { + // CHECK: "vhlo.collective_permute_v1"(%[[ARG0]]) <{ + // CHECK-SAME: channel_id = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME{LITERAL}: source_target_pairs = #vhlo.tensor_v1 : tensor<3x2xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<16x8x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x8x!vhlo.f32_v1> + %0 = "stablehlo.collective_permute"(%arg0) { + source_target_pairs = dense<[[0, 1], [1, 2], [2, 3]]> : tensor<3x2xi64> + } : (tensor<16x8xf32>) -> tensor<16x8xf32> + func.return %0 : tensor<16x8xf32> +} + +// CHECK-LABEL: "default_collective_broadcast" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @default_collective_broadcast(%arg0: tensor<16x8xf32>) -> tensor<16x8xf32> { + // CHECK: "vhlo.collective_broadcast_v1"(%[[ARG0]]) <{ + // CHECK-SAME: channel_id = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME{LITERAL}: replica_groups = #vhlo.tensor_v1 : tensor<1x2xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<16x8x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x8x!vhlo.f32_v1> + %0 = "stablehlo.collective_broadcast"(%arg0) { + replica_groups = dense<[[0, 1]]> : tensor<1x2xi64> + } : (tensor<16x8xf32>) -> tensor<16x8xf32> + func.return %0 : tensor<16x8xf32> +} + +// CHECK-LABEL: "default_compare" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @default_compare(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.compare_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: compare_type = #vhlo, + // CHECK-SAME: comparison_direction = #vhlo + // CHECK-SAME: }> : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.compare"(%arg0, %arg1) { + comparison_direction = #stablehlo + } : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "default_composite" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @default_composite(%arg0: tensor) -> tensor { + // CHECK: "vhlo.composite_v1"(%[[ARG0]]) <{ + // CHECK-SAME: composite_attributes = #vhlo.dict_v1<{}> + // CHECK-SAME: decomposition = #vhlo.string_v1<"composite_target"> + // CHECK-SAME: name = #vhlo.string_v1<"stablehlo.composite_target"> + // CHECK-SAME: version = #vhlo.integer_v1<0 : i64> + // CHECK-SAME: }> : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.composite"(%arg0) { + name = "stablehlo.composite_target", + decomposition = @composite_target + } : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "default_convolution" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @default_convolution(%arg0: tensor<1x8x8x207xf32>, %arg1: tensor<3x3x207x16xf32>) -> tensor<1x6x6x16xf32> { + // CHECK: "vhlo.convolution_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: batch_group_count = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME: feature_group_count = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME: input_batch_dimension = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME: input_feature_dimension = #vhlo.integer_v1<3 : i64>, + // CHECK-SAME: input_spatial_dimensions = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: kernel_input_feature_dimension = #vhlo.integer_v1<2 : i64>, + // CHECK-SAME: kernel_output_feature_dimension = #vhlo.integer_v1<3 : i64>, + // CHECK-SAME: kernel_spatial_dimensions = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: lhs_dilation = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: output_batch_dimension = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME: output_feature_dimension = #vhlo.integer_v1<3 : i64>, + // CHECK-SAME: output_spatial_dimensions = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: padding = #vhlo.tensor_v1 : tensor<2x2xi64>>, + // CHECK-SAME: precision_config = #vhlo.array_v1<[#vhlo, #vhlo]>, + // CHECK-SAME: rhs_dilation = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: window_reversal = #vhlo.tensor_v1 : tensor<2xi1>>, + // CHECK-SAME: window_strides = #vhlo.tensor_v1 : tensor<2xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<1x8x8x207x!vhlo.f32_v1>, !vhlo.tensor_v1<3x3x207x16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<1x6x6x16x!vhlo.f32_v1> + %0 = "stablehlo.convolution"(%arg0, %arg1) { + dimension_numbers = #stablehlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>, + feature_group_count = 1 : i64, + batch_group_count = 1 : i64 + } : (tensor<1x8x8x207xf32>, tensor<3x3x207x16xf32>) -> tensor<1x6x6x16xf32> + func.return %0 : tensor<1x6x6x16xf32> +} + +// CHECK-LABEL: "default_custom_call" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @default_custom_call(%arg0: tensor) -> tensor { + // CHECK: "vhlo.custom_call_v1"(%[[ARG0]]) <{ + // CHECK-SAME: api_version = #vhlo, + // CHECK-SAME: backend_config = #vhlo.string_v1<"">, + // CHECK-SAME: call_target_name = #vhlo.string_v1<"foo">, + // CHECK-SAME: called_computations = #vhlo.array_v1<[]>, + // CHECK-SAME: has_side_effect = #vhlo.bool_v1, + // CHECK-SAME: operand_layouts = #vhlo.array_v1<[]>, + // CHECK-SAME: output_operand_aliases = #vhlo.array_v1<[]> + // CHECK-SAME: result_layouts = #vhlo.array_v1<[]> + // CHECK-SAME: }> : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.custom_call"(%arg0) { + call_target_name = "foo" + } : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "default_dot_general" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @default_dot_general(%arg0: tensor<8x8x16xf32>, %arg1: tensor<8x16x8xf32>) -> tensor<8x8x8xf32> { + // CHECK: "vhlo.dot_general_v2"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: accumulation_type = #vhlo.type_v1, + // CHECK-SAME: allow_imprecise_accumulation = #vhlo.type_v1, + // CHECK-SAME: lhs_batching_dimensions = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: lhs_component_count = #vhlo.type_v1, + // CHECK-SAME: lhs_contracting_dimensions = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: lhs_precision_type = #vhlo.type_v1, + // CHECK-SAME: num_primitive_operations = #vhlo.type_v1, + // CHECK-SAME: precision_config = #vhlo.array_v1<[#vhlo, #vhlo]>, + // CHECK-SAME: rhs_batching_dimensions = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: rhs_component_count = #vhlo.type_v1, + // CHECK-SAME: rhs_contracting_dimensions = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: rhs_precision_type = #vhlo.type_v1 + // CHECK-SAME: }> : (!vhlo.tensor_v1<8x8x16x!vhlo.f32_v1>, !vhlo.tensor_v1<8x16x8x!vhlo.f32_v1>) -> !vhlo.tensor_v1<8x8x8x!vhlo.f32_v1> + %0 = "stablehlo.dot_general"(%arg0, %arg1) { + dot_dimension_numbers = #stablehlo.dot< + lhs_batching_dimensions = [0], + lhs_contracting_dimensions = [2], + rhs_batching_dimensions = [0], + rhs_contracting_dimensions = [1] + > + } : (tensor<8x8x16xf32>, tensor<8x16x8xf32>) -> tensor<8x8x8xf32> + func.return %0 : tensor<8x8x8xf32> +} + +// CHECK-LABEL: "dot_general_algorithm" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @dot_general_algorithm(%arg0: tensor<8x8x16xf32>, %arg1: tensor<8x16x8xf32>) -> tensor<8x8x8xf32> { +// CHECK: "vhlo.dot_general_v2"(%[[ARG0]], %[[ARG1]]) <{ +// CHECK-SAME: accumulation_type = #vhlo.type_v1, +// CHECK-SAME: allow_imprecise_accumulation = #vhlo.bool_v1, +// CHECK-SAME: lhs_batching_dimensions = #vhlo.tensor_v1 : tensor<1xi64>>, +// CHECK-SAME: lhs_component_count = #vhlo.integer_v1<1 : i64>, +// CHECK-SAME: lhs_contracting_dimensions = #vhlo.tensor_v1 : tensor<1xi64>>, +// CHECK-SAME: lhs_precision_type = #vhlo.type_v1, +// CHECK-SAME: num_primitive_operations = #vhlo.integer_v1<1 : i64>, +// CHECK-SAME: precision_config = #vhlo.array_v1<[#vhlo, #vhlo]>, +// CHECK-SAME: rhs_batching_dimensions = #vhlo.tensor_v1 : tensor<1xi64>>, +// CHECK-SAME: rhs_component_count = #vhlo.integer_v1<1 : i64>, +// CHECK-SAME: rhs_contracting_dimensions = #vhlo.tensor_v1 : tensor<1xi64>>, +// CHECK-SAME: rhs_precision_type = #vhlo.type_v1 +// CHECK-SAME: }> : (!vhlo.tensor_v1<8x8x16x!vhlo.f32_v1>, !vhlo.tensor_v1<8x16x8x!vhlo.f32_v1>) -> !vhlo.tensor_v1<8x8x8x!vhlo.f32_v1> + %0 = "stablehlo.dot_general"(%arg0, %arg1) { + dot_dimension_numbers = #stablehlo.dot< + lhs_batching_dimensions = [0], + lhs_contracting_dimensions = [2], + rhs_batching_dimensions = [0], + rhs_contracting_dimensions = [1] + >, + algorithm = #stablehlo.dot_algorithm< + lhs_precision_type = tf32, + rhs_precision_type = tf32, + accumulation_type = f32, + lhs_component_count = 1, + rhs_component_count = 1, + num_primitive_operations = 1, + allow_imprecise_accumulation = false + > + } : (tensor<8x8x16xf32>, tensor<8x16x8xf32>) -> tensor<8x8x8xf32> + func.return %0 : tensor<8x8x8xf32> +} + +// CHECK-LABEL: "default_dynamic_broadcast_in_dim" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @default_dynamic_broadcast_in_dim(%arg0: tensor, %arg1: tensor<2xindex>) -> tensor { + // CHECK: "vhlo.dynamic_broadcast_in_dim_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: broadcast_dimensions = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: known_expanding_dimensions = #vhlo.tensor_v1 : tensor<0xi64>>, + // CHECK-SAME: known_nonexpanding_dimensions = #vhlo.tensor_v1 : tensor<0xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1, !vhlo.tensor_v1<2x!vhlo.index_v1>) -> !vhlo.tensor_v1 + %0 = "stablehlo.dynamic_broadcast_in_dim"(%arg0, %arg1) { + broadcast_dimensions = array + } : (tensor, tensor<2xindex>) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "default_dynamic_conv" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @default_dynamic_conv(%arg0: tensor<1x8x8x207xf32>, %arg1: tensor<3x3x207x16xf32>, %arg2: tensor<2x2xi64>) -> tensor<1x?x?x16xf32> { + // CHECK: "vhlo.dynamic_conv_v2"(%[[ARG0]], %[[ARG1]], %[[ARG2]]) <{ + // CHECK-SAME: batch_group_count = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME: feature_group_count = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME: input_batch_dimension = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME: input_feature_dimension = #vhlo.integer_v1<3 : i64>, + // CHECK-SAME: input_spatial_dimensions = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: kernel_input_feature_dimension = #vhlo.integer_v1<2 : i64>, + // CHECK-SAME: kernel_output_feature_dimension = #vhlo.integer_v1<3 : i64>, + // CHECK-SAME: kernel_spatial_dimensions = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: lhs_dilation = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: output_batch_dimension = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME: output_feature_dimension = #vhlo.integer_v1<3 : i64>, + // CHECK-SAME: output_spatial_dimensions = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: precision_config = #vhlo.array_v1<[#vhlo, #vhlo]>, + // CHECK-SAME: rhs_dilation = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: window_reversal = #vhlo.tensor_v1 : tensor<2xi1>>, + // CHECK-SAME: window_strides = #vhlo.tensor_v1 : tensor<2xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<1x8x8x207x!vhlo.f32_v1>, !vhlo.tensor_v1<3x3x207x16x!vhlo.f32_v1>, !vhlo.tensor_v1<2x2x!vhlo.i64_v1>) -> !vhlo.tensor_v1<1x?x?x16x!vhlo.f32_v1> + %0 = "stablehlo.dynamic_conv"(%arg0, %arg1, %arg2) { + dimension_numbers = #stablehlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>, + feature_group_count = 1 : i64, + batch_group_count = 1 : i64 + } : (tensor<1x8x8x207xf32>, tensor<3x3x207x16xf32>, tensor<2x2xi64>) -> tensor<1x?x?x16xf32> + func.return %0 : tensor<1x?x?x16xf32> +} + +// CHECK-LABEL: "default_dynamic_gather" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @default_dynamic_gather(%arg0 : tensor<2x4x9xf32>, %arg1 : tensor<1x5x2xi32>, %arg2 : tensor<3xi32>) -> tensor<1x5x8xf32> { + // CHECK: "vhlo.dynamic_gather_v2"(%[[ARG0]], %[[ARG1]], %[[ARG2]]) <{ + // CHECK-SAME: collapsed_slice_dims = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: index_vector_dim = #vhlo.integer_v1<2 : i64>, + // CHECK-SAME: indices_are_sorted = #vhlo.bool_v1, + // CHECK-SAME: offset_dims = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: operand_batching_dims = #vhlo.tensor_v1 : tensor<0xi64>>, + // CHECK-SAME: start_index_map = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: start_indices_batching_dims = #vhlo.tensor_v1 : tensor<0xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<2x4x9x!vhlo.f32_v1>, !vhlo.tensor_v1<1x5x2x!vhlo.i32_v1>, !vhlo.tensor_v1<3x!vhlo.i32_v1>) -> !vhlo.tensor_v1<1x5x8x!vhlo.f32_v1> + %0 = "stablehlo.dynamic_gather"(%arg0, %arg1, %arg2) { + dimension_numbers = #stablehlo.gather< + offset_dims = [2], + collapsed_slice_dims = [0, 1], + start_index_map = [0, 1], + index_vector_dim = 2 + > + } : (tensor<2x4x9xf32>, tensor<1x5x2xi32>, tensor<3xi32>) -> tensor<1x5x8xf32> + func.return %0 : tensor<1x5x8xf32> +} + +func.func @default_func(%arg0: tensor) -> tensor { + // CHECK: "vhlo.func_v1"() <{ + // CHECK-SAME: arg_attrs = #vhlo.array_v1<[]>, + // CHECK-SAME: function_type = #vhlo.type_v1) -> !vhlo.tensor_v1>>, + // CHECK-SAME: res_attrs = #vhlo.array_v1<[]>, + // CHECK-SAME: sym_name = #vhlo.string_v1<"default_func">, + // CHECK-SAME: sym_visibility = #vhlo.string_v1<""> + // CHECK-SAME: }> ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG0:.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: "vhlo.return_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : () -> () + func.return %arg0 : tensor +} + +// CHECK-LABEL: "default_gather" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @default_gather(%arg0 : tensor<2x4x9xf32>, %arg1 : tensor<1x5x2xi32>) -> tensor<1x5x1xf32> { + // CHECK: "vhlo.gather_v2"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: collapsed_slice_dims = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: index_vector_dim = #vhlo.integer_v1<2 : i64>, + // CHECK-SAME: indices_are_sorted = #vhlo.bool_v1, + // CHECK-SAME: offset_dims = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: operand_batching_dims = #vhlo.tensor_v1 : tensor<0xi64>>, + // CHECK-SAME: slice_sizes = #vhlo.tensor_v1 : tensor<3xi64>>, + // CHECK-SAME: start_index_map = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: start_indices_batching_dims = #vhlo.tensor_v1 : tensor<0xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<2x4x9x!vhlo.f32_v1>, !vhlo.tensor_v1<1x5x2x!vhlo.i32_v1>) -> !vhlo.tensor_v1<1x5x1x!vhlo.f32_v1> + %0 = "stablehlo.gather"(%arg0, %arg1) { + dimension_numbers = #stablehlo.gather< + offset_dims = [2], + collapsed_slice_dims = [0, 1], + start_index_map = [0, 1], + index_vector_dim = 2 + >, + slice_sizes = array + } : (tensor<2x4x9xf32>, tensor<1x5x2xi32>) -> tensor<1x5x1xf32> + func.return %0 : tensor<1x5x1xf32> +} + +// CHECK-LABEL: "default_infeed" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @default_infeed(%arg0: !stablehlo.token) -> (tensor, !stablehlo.token) { + // CHECK: "vhlo.infeed_v1"(%[[ARG0]]) <{ + // CHECK-SAME: infeed_config = #vhlo.string_v1<"">, + // CHECK-SAME{LITERAL}: layout = #vhlo.array_v1<[]> + // CHECK-SAME: }> : (!vhlo.token_v1) -> (!vhlo.tensor_v1, !vhlo.token_v1) + %0:2 = "stablehlo.infeed"(%arg0) : (!stablehlo.token) -> (tensor, !stablehlo.token) + func.return %0#0, %0#1 : tensor, !stablehlo.token +} + +// CHECK-LABEL: "default_outfeed" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @default_outfeed(%arg0: tensor, %arg1: !stablehlo.token) -> !stablehlo.token { + // CHECK: "vhlo.outfeed_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: outfeed_config = #vhlo.string_v1<""> + // CHECK-SAME: }> : (!vhlo.tensor_v1, !vhlo.token_v1) -> !vhlo.token_v1 + %0 = "stablehlo.outfeed"(%arg0, %arg1) : (tensor, !stablehlo.token) -> !stablehlo.token + func.return %0 : !stablehlo.token +} + +// CHECK-LABEL: "default_recv" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @default_recv(%arg0: !stablehlo.token) -> (tensor, !stablehlo.token) { + // CHECK: "vhlo.recv_v1"(%[[ARG0]]) <{ + // CHECK-SAME: channel_id = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME: channel_type = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME: is_host_transfer = #vhlo.bool_v1 + // CHECK-SAME: }> : (!vhlo.token_v1) -> (!vhlo.tensor_v1, !vhlo.token_v1) + %0:2 = "stablehlo.recv"(%arg0) { + channel_handle = #stablehlo.channel_handle + } : (!stablehlo.token) -> (tensor, !stablehlo.token) + func.return %0#0, %0#1 : tensor, !stablehlo.token +} + +// CHECK-LABEL: "default_send" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @default_send(%arg0: tensor, %arg1: !stablehlo.token) -> !stablehlo.token { + // CHECK: "vhlo.send_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: channel_id = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME: channel_type = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME: is_host_transfer = #vhlo.bool_v1 + // CHECK-SAME: }> : (!vhlo.tensor_v1, !vhlo.token_v1) -> !vhlo.token_v1 + %0 = "stablehlo.send"(%arg0, %arg1) { + channel_handle = #stablehlo.channel_handle + } : (tensor, !stablehlo.token) -> !stablehlo.token + func.return %0 : !stablehlo.token +} + +// CHECK-LABEL: "default_reduce_scatter" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @default_reduce_scatter(%arg0: tensor<16xf32>) -> tensor<16xf32> { + // CHECK: "vhlo.reduce_scatter_v1"(%[[ARG0]]) <{ + // CHECK-SAME: channel_id = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME{LITERAL}: replica_groups = #vhlo.tensor_v1 : tensor<2x1xi64>>, + // CHECK-SAME: scatter_dimension = #vhlo.integer_v1<0 : i64> + // CHECK-SAME: use_global_device_ids = #vhlo.bool_v1 + // CHECK-SAME: }> ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG1:arg.*]]: !vhlo.tensor_v1, %[[ARG2:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: %[[VAL1:.*]] = "vhlo.add_v1"(%[[ARG1]], %[[ARG2]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + // CHECK-NEXT: "vhlo.return_v1"(%[[VAL1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1<16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x!vhlo.f32_v1> + %0 = "stablehlo.reduce_scatter"(%arg0) ({ + ^bb0(%arg1: tensor, %arg2: tensor): + %1 = "stablehlo.add"(%arg1, %arg2) : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }) { + scatter_dimension = 0 : i64, + replica_groups = dense<[[0], [1]]> : tensor<2x1xi64> + } : (tensor<16xf32>) -> tensor<16xf32> + func.return %0 : tensor<16xf32> +} + +// CHECK-LABEL: "default_reduce_window" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @default_reduce_window(%arg0: tensor<2x17x31x7xf32>, %arg1: tensor) -> tensor<2x16x30x7xf32> { + // CHECK: "vhlo.reduce_window_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: base_dilations = #vhlo.tensor_v1 : tensor<4xi64>>, + // CHECK-SAME{LITERAL}: padding = #vhlo.tensor_v1 : tensor<4x2xi64>>, + // CHECK-SAME: window_dilations = #vhlo.tensor_v1 : tensor<4xi64>>, + // CHECK-SAME: window_dimensions = #vhlo.tensor_v1 : tensor<4xi64>>, + // CHECK-SAME: window_strides = #vhlo.tensor_v1 : tensor<4xi64>> + // CHECK-SAME: }> ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG2:arg.*]]: !vhlo.tensor_v1, %[[ARG3:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: %[[VAL1:.*]] = "vhlo.maximum_v1"(%[[ARG2]], %[[ARG3]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + // CHECK-NEXT: "vhlo.return_v1"(%[[VAL1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1<2x17x31x7x!vhlo.f32_v1>, !vhlo.tensor_v1) -> !vhlo.tensor_v1<2x16x30x7x!vhlo.f32_v1> + %0 = "stablehlo.reduce_window"(%arg0, %arg1) ({ + ^bb0(%arg2: tensor, %arg3: tensor): + %1 = "stablehlo.maximum"(%arg2, %arg3) : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }) { + window_dimensions = array + } : (tensor<2x17x31x7xf32>, tensor) -> tensor<2x16x30x7xf32> + func.return %0 : tensor<2x16x30x7xf32> +} + +// CHECK-LABEL: "default_scatter" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @default_scatter(%arg0: tensor<200x100x300xf32>, %arg1: tensor<10x2xi32>, %arg2: tensor<10x300xf32>) -> tensor<200x100x300xf32> { + // CHECK: "vhlo.scatter_v2"(%[[ARG0]], %[[ARG1]], %[[ARG2]]) <{ + // CHECK-SAME: index_vector_dim = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME: indices_are_sorted = #vhlo.bool_v1, + // CHECK-SAME: input_batching_dims = #vhlo.tensor_v1 : tensor<0xi64>>, + // CHECK-SAME: inserted_window_dims = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: scatter_dims_to_operand_dims = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: scatter_indices_batching_dims = #vhlo.tensor_v1 : tensor<0xi64>>, + // CHECK-SAME: unique_indices = #vhlo.bool_v1, + // CHECK-SAME: update_window_dims = #vhlo.tensor_v1 : tensor<1xi64>> + // CHECK-SAME: }> ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG3:arg.*]]: !vhlo.tensor_v1, %[[ARG4:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: %[[VAL1:.*]] = "vhlo.add_v1"(%[[ARG3]], %[[ARG4]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + // CHECK-NEXT: "vhlo.return_v1"(%[[VAL1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1<200x100x300x!vhlo.f32_v1>, !vhlo.tensor_v1<10x2x!vhlo.i32_v1>, !vhlo.tensor_v1<10x300x!vhlo.f32_v1>) -> !vhlo.tensor_v1<200x100x300x!vhlo.f32_v1> + %0 = "stablehlo.scatter"(%arg0, %arg1, %arg2) ({ + ^bb0(%arg3: tensor, %arg4: tensor): + %1 = "stablehlo.add"(%arg3, %arg4) : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }) { + scatter_dimension_numbers = #stablehlo.scatter< + update_window_dims = [1], + inserted_window_dims = [0, 1], + scatter_dims_to_operand_dims = [0, 1], + index_vector_dim = 1 + > + } : (tensor<200x100x300xf32>, tensor<10x2xi32>, tensor<10x300xf32>) -> tensor<200x100x300xf32> + func.return %0 : tensor<200x100x300xf32> +} + +// CHECK-LABEL: "default_select_and_scatter" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @default_select_and_scatter(%arg0: tensor<10x24x24x64xf32>, %arg1: tensor<10x23x23x64xf32>, %arg2: tensor) -> tensor<10x24x24x64xf32> { + // CHECK: "vhlo.select_and_scatter_v1"(%[[ARG0]], %[[ARG1]], %[[ARG2]]) <{ + // CHECK-SAME: padding = #vhlo.tensor_v1 : tensor<4x2xi64>>, + // CHECK-SAME: window_dimensions = #vhlo.tensor_v1 : tensor<4xi64>>, + // CHECK-SAME: window_strides = #vhlo.tensor_v1 : tensor<4xi64>> + // CHECK-SAME: }> ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG31:arg.*]]: !vhlo.tensor_v1, %[[ARG41:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: %[[VAL11:.*]] = "vhlo.compare_v1"(%[[ARG31]], %[[ARG41]]) <{compare_type = #vhlo, comparison_direction = #vhlo}> + // CHECK-NEXT: "vhlo.return_v1"(%[[VAL11]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }, { + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG32:arg.*]]: !vhlo.tensor_v1, %[[ARG42:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: %[[VAL12:.*]] = "vhlo.add_v1"(%[[ARG32]], %[[ARG42]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + // CHECK-NEXT: "vhlo.return_v1"(%[[VAL12]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1<10x24x24x64x!vhlo.f32_v1>, !vhlo.tensor_v1<10x23x23x64x!vhlo.f32_v1>, !vhlo.tensor_v1) -> !vhlo.tensor_v1<10x24x24x64x!vhlo.f32_v1> + %0 = "stablehlo.select_and_scatter"(%arg0, %arg1, %arg2) ({ + ^bb0(%arg3: tensor, %arg4: tensor): + %1 = "stablehlo.compare"(%arg3, %arg4) {compare_type = #stablehlo, comparison_direction = #stablehlo} : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }, { + ^bb0(%arg3: tensor, %arg4: tensor): + %1 = "stablehlo.add"(%arg3, %arg4) : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }) { + window_dimensions = array + } : (tensor<10x24x24x64xf32>, tensor<10x23x23x64xf32>, tensor) -> tensor<10x24x24x64xf32> + func.return %0 : tensor<10x24x24x64xf32> +} + +// CHECK-LABEL: "default_sort" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @default_sort(%arg0: tensor<16xf32>) -> tensor<16xf32> { + // CHECK: "vhlo.sort_v1"(%[[ARG0]]) <{ + // CHECK-SAME: dimension = #vhlo.integer_v1<-1 : i64> + // CHECK-SAME: is_stable = #vhlo.bool_v1 + // CHECK-SAME: }> ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG1:arg.*]]: !vhlo.tensor_v1, %[[ARG2:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: %[[VAL1:.*]] = "vhlo.compare_v1"(%[[ARG1]], %[[ARG2]]) <{compare_type = #vhlo, comparison_direction = #vhlo}> + // CHECK-NEXT: "vhlo.return_v1"(%[[VAL1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1<16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x!vhlo.f32_v1> + %0 = "stablehlo.sort"(%arg0) ({ + ^bb0(%arg1: tensor, %arg2: tensor): + %1 = "stablehlo.compare"(%arg1, %arg2) {compare_type = #stablehlo, comparison_direction = #stablehlo} : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }) : (tensor<16xf32>) -> tensor<16xf32> + func.return %0 : tensor<16xf32> +} + +// ============ OPS ============ + +// CHECK-LABEL: "op_abs" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_abs(%arg0: tensor) -> tensor { + // CHECK: "vhlo.abs_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.abs"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_add" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_add(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_after_all" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_after_all(%arg0: !stablehlo.token) -> !stablehlo.token { + // CHECK: "vhlo.after_all_v1"(%[[ARG0]]) : (!vhlo.token_v1) -> !vhlo.token_v1 + %0 = "stablehlo.after_all"(%arg0) : (!stablehlo.token) -> !stablehlo.token + func.return %0 : !stablehlo.token +} + +// CHECK-LABEL: "op_all_gather" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_all_gather(%arg0: tensor<16x8xf32>) -> tensor<16x16xf32> { + // CHECK: "vhlo.all_gather_v2"(%[[ARG0]]) <{ + // CHECK-SAME: all_gather_dim = #vhlo.integer_v1<1 : i64> + // CHECK-SAME: channel_id = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME{LITERAL}: replica_groups = #vhlo.tensor_v1 : tensor<2x1xi64>>, + // CHECK-SAME: use_global_device_ids = #vhlo.bool_v1 + // CHECK-SAME: }> : (!vhlo.tensor_v1<16x8x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x16x!vhlo.f32_v1> + %0 = "stablehlo.all_gather"(%arg0) { + all_gather_dim = 1 : i64, + replica_groups = dense<[[0], [1]]> : tensor<2x1xi64>, + channel_handle = #stablehlo.channel_handle, + use_global_device_ids + } : (tensor<16x8xf32>) -> tensor<16x16xf32> + func.return %0 : tensor<16x16xf32> +} + +// CHECK-LABEL: "op_all_reduce" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_all_reduce(%arg0: tensor) -> tensor { + // CHECK: "vhlo.all_reduce_v2"(%[[ARG0]]) <{ + // CHECK-SAME: channel_id = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME{LITERAL}: replica_groups = #vhlo.tensor_v1 : tensor<2x1xi64>>, + // CHECK-SAME: use_global_device_ids = #vhlo.bool_v1 + // CHECK-SAME: }> ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG1:arg.*]]: !vhlo.tensor_v1, %[[ARG2:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: %[[VAL1:.*]] = "vhlo.add_v1"(%[[ARG1]], %[[ARG2]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + // CHECK-NEXT: "vhlo.return_v1"(%[[VAL1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.all_reduce"(%arg0) ({ + ^bb0(%arg1: tensor, %arg2: tensor): + %1 = "stablehlo.add"(%arg1, %arg2) : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }) { + replica_groups = dense<[[0], [1]]> : tensor<2x1xi64>, + channel_handle = #stablehlo.channel_handle, + use_global_device_ids + } : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_all_reduce_with_promotable_types" +func.func @op_all_reduce_with_promotable_types(%operand: tensor) -> tensor { + // CHECK: "vhlo.all_reduce_v2"(%[[ARG0:.*]]) + // CHECK: ^[[BB:bb.*]](%[[ARG1:arg.*]]: !vhlo.tensor_v1, %[[ARG2:arg.*]]: !vhlo.tensor_v1): + // CHECK: "vhlo.return_v1"(%[[VAL1:.*]]) : (!vhlo.tensor_v1) -> () + // CHECK: }) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %result = "stablehlo.all_reduce"(%operand) ({ + ^bb0(%arg0: tensor, %arg1: tensor): + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + "stablehlo.return"(%0) : (tensor) -> () + }) { + replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>, + channel_handle = #stablehlo.channel_handle, + use_global_device_ids + } : (tensor) -> tensor + + func.return %result : tensor +} + +// CHECK-LABEL: "default_all_reduce_variadic" +func.func @default_all_reduce_variadic(%arg0: tensor, %arg1: tensor) -> (tensor, tensor) { + %0:2 = "stablehlo.all_reduce"(%arg0, %arg1) ({ + ^bb0(%arg2: tensor, %arg3: tensor): + %1 = "stablehlo.add"(%arg2, %arg3) : (tensor, tensor) -> (tensor) + "stablehlo.return"(%1) : (tensor) -> () + }) { + replica_groups = dense<[[0], [1]]> : tensor<2x1xi64> + } : (tensor, tensor) -> (tensor, tensor) + func.return %0#0, %0#1 : tensor, tensor +} + +// CHECK-LABEL: "op_all_to_all" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_all_to_all(%arg0: tensor<4x16xf32>) -> tensor<16x4xf32> { + // CHECK: "vhlo.all_to_all_v2"(%[[ARG0]]) <{ + // CHECK-SAME: channel_id = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME: concat_dimension = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME{LITERAL}: replica_groups = #vhlo.tensor_v1 : tensor<1x4xi64>>, + // CHECK-SAME: split_count = #vhlo.integer_v1<4 : i64> + // CHECK-SAME: split_dimension = #vhlo.integer_v1<1 : i64> + // CHECK-SAME: }> : (!vhlo.tensor_v1<4x16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x4x!vhlo.f32_v1> + %0 = "stablehlo.all_to_all"(%arg0) { + split_dimension = 1 : i64, + concat_dimension = 0 : i64, + split_count = 4 : i64, + replica_groups = dense<[[0, 1, 2, 3]]> : tensor<1x4xi64>, + channel_handle = #stablehlo.channel_handle + } : (tensor<4x16xf32>) -> tensor<16x4xf32> + func.return %0 : tensor<16x4xf32> +} + +// CHECK-LABEL: "op_and" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_and(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.and_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.and"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_atan2" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_atan2(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.atan2_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.atan2"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_batch_norm_grad" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}, %[[ARG3:.*]]: {{.*}}, %[[ARG4:.*]]: {{.*}}) +func.func @op_batch_norm_grad(%arg0: tensor<16x16x16x16xf32>, %arg1: tensor<16xf32>, %arg2: tensor<16xf32>, %arg3: tensor<16xf32>, %arg4: tensor<16x16x16x16xf32>) -> (tensor<16x16x16x16xf32>, tensor<16xf32>, tensor<16xf32>) { + // CHECK: "vhlo.batch_norm_grad_v1"(%[[ARG0]], %[[ARG1]], %[[ARG2]], %[[ARG3]], %[[ARG4]]) <{ + // CHECK-SAME: epsilon = #vhlo.float_v1<1.000000e-03 : !vhlo.f32_v1>, + // CHECK-SAME: feature_index = #vhlo.integer_v1<0 : i64> + // CHECK-SAME: }> : (!vhlo.tensor_v1<16x16x16x16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x16x16x16x!vhlo.f32_v1>) -> (!vhlo.tensor_v1<16x16x16x16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x!vhlo.f32_v1>) + %0:3 = "stablehlo.batch_norm_grad"(%arg0, %arg1, %arg2, %arg3, %arg4) { + epsilon = 0.001 : f32, + feature_index = 0 : i64 + } : (tensor<16x16x16x16xf32>, tensor<16xf32>, tensor<16xf32>, tensor<16xf32>, tensor<16x16x16x16xf32>) -> (tensor<16x16x16x16xf32>, tensor<16xf32>, tensor<16xf32>) + func.return %0#0, %0#1, %0#2 : tensor<16x16x16x16xf32>, tensor<16xf32>, tensor<16xf32> +} + +// CHECK-LABEL: "op_batch_norm_inference" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}, %[[ARG3:.*]]: {{.*}}, %[[ARG4:.*]]: {{.*}}) +func.func @op_batch_norm_inference(%arg0: tensor<16x16x16x16xf32>, %arg1: tensor<16xf32>, %arg2: tensor<16xf32>, %arg3: tensor<16xf32>, %arg4: tensor<16xf32>) -> tensor<16x16x16x16xf32> { + // CHECK: "vhlo.batch_norm_inference_v1"(%[[ARG0]], %[[ARG1]], %[[ARG2]], %[[ARG3]], %[[ARG4]]) <{ + // CHECK-SAME: epsilon = #vhlo.float_v1<1.000000e-03 : !vhlo.f32_v1>, + // CHECK-SAME: feature_index = #vhlo.integer_v1<0 : i64> + // CHECK-SAME: }> : (!vhlo.tensor_v1<16x16x16x16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x16x16x16x!vhlo.f32_v1> + %0 = "stablehlo.batch_norm_inference"(%arg0, %arg1, %arg2, %arg3, %arg4) { + epsilon = 0.001 : f32, + feature_index = 0 : i64 + } : (tensor<16x16x16x16xf32>, tensor<16xf32>, tensor<16xf32>, tensor<16xf32>, tensor<16xf32>) -> tensor<16x16x16x16xf32> + func.return %0 : tensor<16x16x16x16xf32> +} + +// CHECK-LABEL: "op_batch_norm_training" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @op_batch_norm_training(%arg0: tensor<16x16x16x16xf32>, %arg1: tensor<16xf32>, %arg2: tensor<16xf32>) -> (tensor<16x16x16x16xf32>, tensor<16xf32>, tensor<16xf32>) { + // CHECK: "vhlo.batch_norm_training_v1"(%[[ARG0]], %[[ARG1]], %[[ARG2]]) <{ + // CHECK-SAME: epsilon = #vhlo.float_v1<1.000000e-03 : !vhlo.f32_v1>, + // CHECK-SAME: feature_index = #vhlo.integer_v1<0 : i64> + // CHECK-SAME: }> : (!vhlo.tensor_v1<16x16x16x16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x!vhlo.f32_v1>) -> (!vhlo.tensor_v1<16x16x16x16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x!vhlo.f32_v1>) + %0:3 = "stablehlo.batch_norm_training"(%arg0, %arg1, %arg2) { + epsilon = 0.001 : f32, + feature_index = 0 : i64 + } : (tensor<16x16x16x16xf32>, tensor<16xf32>, tensor<16xf32>) -> (tensor<16x16x16x16xf32>, tensor<16xf32>, tensor<16xf32>) + func.return %0#0, %0#1, %0#2 : tensor<16x16x16x16xf32>, tensor<16xf32>, tensor<16xf32> +} + +// CHECK-LABEL: "op_bitcast_convert" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_bitcast_convert(%arg0: tensor) -> tensor { + // CHECK: "vhlo.bitcast_convert_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.bitcast_convert"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_broadcast_in_dim" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_broadcast_in_dim(%arg0: tensor<16xf32>) -> tensor<16x16xf32> { + // CHECK: "vhlo.broadcast_in_dim_v1"(%[[ARG0]]) <{ + // CHECK-SAME: broadcast_dimensions = #vhlo.tensor_v1 : tensor<1xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x16x!vhlo.f32_v1> + %0 = "stablehlo.broadcast_in_dim"(%arg0) { + broadcast_dimensions = array + } : (tensor<16xf32>) -> tensor<16x16xf32> + func.return %0 : tensor<16x16xf32> +} + +// CHECK-LABEL: "op_broadcast" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_broadcast(%arg0: tensor<16xf32>) -> tensor<16x16xf32> { + // CHECK: "vhlo.broadcast_v1"(%[[ARG0]]) <{ + // CHECK-SAME: broadcast_sizes = #vhlo.tensor_v1 : tensor<1xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x16x!vhlo.f32_v1> + %0 = "stablehlo.broadcast"(%arg0) { + broadcast_sizes = array + } : (tensor<16xf32>) -> tensor<16x16xf32> + func.return %0 : tensor<16x16xf32> +} + +// CHECK-LABEL: "op_case" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_case(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.case_v1"(%[[ARG0]]) ({ + // CHECK-NEXT: "vhlo.return_v1"(%[[ARG1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.case"(%arg0) ({ + "stablehlo.return"(%arg1) : (tensor) -> () + }) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_cbrt" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_cbrt(%arg0: tensor) -> tensor { + // CHECK: "vhlo.cbrt_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.cbrt"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_ceil" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_ceil(%arg0: tensor) -> tensor { + // CHECK: "vhlo.ceil_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.ceil"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_cholesky" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_cholesky(%arg0: tensor<1x16x16xf32>) -> tensor<1x16x16xf32> { + // CHECK: "vhlo.cholesky_v1"(%[[ARG0]]) <{ + // CHECK-SAME: lower = #vhlo.bool_v1 + // CHECK-SAME: }> : (!vhlo.tensor_v1<1x16x16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<1x16x16x!vhlo.f32_v1> + %0 = "stablehlo.cholesky"(%arg0) { + lower = true + } : (tensor<1x16x16xf32>) -> tensor<1x16x16xf32> + func.return %0 : tensor<1x16x16xf32> +} + +// CHECK-LABEL: "op_clamp" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @op_clamp(%arg0: tensor, %arg1: tensor, %arg2: tensor) -> tensor { + // CHECK: "vhlo.clamp_v1"(%[[ARG0]], %[[ARG1]], %[[ARG2]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.clamp"(%arg0, %arg1, %arg2) : (tensor, tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_count_leading_zeros" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_count_leading_zeros(%arg0: tensor) -> tensor { + // CHECK: "vhlo.count_leading_zeros_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.count_leading_zeros"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_collective_permute" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_collective_permute(%arg0: tensor<16x8xf32>) -> tensor<16x8xf32> { + // CHECK: "vhlo.collective_permute_v1"(%[[ARG0]]) <{ + // CHECK-SAME: channel_id = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME{LITERAL}: source_target_pairs = #vhlo.tensor_v1 : tensor<3x2xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<16x8x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x8x!vhlo.f32_v1> + %0 = "stablehlo.collective_permute"(%arg0) { + source_target_pairs = dense<[[0, 1], [1, 2], [2, 3]]> : tensor<3x2xi64>, + channel_handle = #stablehlo.channel_handle + } : (tensor<16x8xf32>) -> tensor<16x8xf32> + func.return %0 : tensor<16x8xf32> +} + +// CHECK-LABEL: "op_compare" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_compare(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.compare_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: compare_type = #vhlo, + // CHECK-SAME: comparison_direction = #vhlo + // CHECK-SAME: }> : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.compare"(%arg0, %arg1) { + comparison_direction = #stablehlo, + compare_type = #stablehlo + } : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_complex" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_complex(%arg0: tensor, %arg1: tensor) -> tensor> { + // CHECK: "vhlo.complex_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1> + %0 = "stablehlo.complex"(%arg0, %arg1) : (tensor, tensor) -> tensor> + func.return %0 : tensor> +} + +// CHECK-LABEL: "op_composite" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_composite(%arg0: tensor) -> tensor { + // CHECK: "vhlo.composite_v1"(%[[ARG0]]) <{ + // CHECK-SAME: composite_attributes = #vhlo.dict_v1<{#vhlo.string_v1<"my_int"> = #vhlo.integer_v1<1 : i64>, #vhlo.string_v1<"my_string"> = #vhlo.string_v1<"foo">}> + // CHECK-SAME: decomposition = #vhlo.string_v1<"composite_target"> + // CHECK-SAME: name = #vhlo.string_v1<"stablehlo.composite_target"> + // CHECK-SAME: version = #vhlo.integer_v1<1 : i32> + // CHECK-SAME: }> : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.composite"(%arg0) { + name = "stablehlo.composite_target", + decomposition = @composite_target, + version = 1 : i32, + composite_attributes = { + my_string = "foo", + my_int = 1 : i64 + } + } : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_concatenate" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_concatenate(%arg0: tensor<8xf32>, %arg1: tensor<8xf32>) -> tensor<16xf32> { + // CHECK: "vhlo.concatenate_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: dimension = #vhlo.integer_v1<0 : i64> + // CHECK-SAME: }> : (!vhlo.tensor_v1<8x!vhlo.f32_v1>, !vhlo.tensor_v1<8x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x!vhlo.f32_v1> + %0 = "stablehlo.concatenate"(%arg0, %arg1) { + dimension = 0 : i64 + } : (tensor<8xf32>, tensor<8xf32>) -> tensor<16xf32> + func.return %0 : tensor<16xf32> +} + +// CHECK-LABEL: "op_constant" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_constant(%arg0: tensor) -> tensor { + // CHECK: "vhlo.constant_v1"() <{ + // CHECK-SAME: value = #vhlo.tensor_v1 : tensor> + // CHECK-SAME: }> : () -> !vhlo.tensor_v1 + %0 = "stablehlo.constant"() { + value = dense<0.0> : tensor + } : () -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_convert" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_convert(%arg0: tensor) -> tensor { + // CHECK: "vhlo.convert_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.convert"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_convolution" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_convolution(%arg0: tensor<1x8x8x207xf32>, %arg1: tensor<3x3x207x16xf32>) -> tensor<1x7x7x16xf32> { + // CHECK: "vhlo.convolution_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: batch_group_count = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME: feature_group_count = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME: input_batch_dimension = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME: input_feature_dimension = #vhlo.integer_v1<3 : i64>, + // CHECK-SAME: input_spatial_dimensions = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: kernel_input_feature_dimension = #vhlo.integer_v1<2 : i64>, + // CHECK-SAME: kernel_output_feature_dimension = #vhlo.integer_v1<3 : i64>, + // CHECK-SAME: kernel_spatial_dimensions = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: lhs_dilation = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: output_batch_dimension = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME: output_feature_dimension = #vhlo.integer_v1<3 : i64>, + // CHECK-SAME: output_spatial_dimensions = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: padding = #vhlo.tensor_v1 : tensor<2x2xi64>>, + // CHECK-SAME: precision_config = #vhlo.array_v1<[#vhlo, #vhlo]>, + // CHECK-SAME: rhs_dilation = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: window_reversal = #vhlo.tensor_v1 : tensor<2xi1>>, + // CHECK-SAME: window_strides = #vhlo.tensor_v1 : tensor<2xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<1x8x8x207x!vhlo.f32_v1>, !vhlo.tensor_v1<3x3x207x16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<1x7x7x16x!vhlo.f32_v1> + %0 = "stablehlo.convolution"(%arg0, %arg1) { + window_strides = array, + padding = dense<1> : tensor<2x2xi64>, + lhs_dilation = array, + rhs_dilation = array, + window_reversal = array, + dimension_numbers = #stablehlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>, + feature_group_count = 1 : i64, + batch_group_count = 1 : i64, + precision_config = [#stablehlo, #stablehlo] + } : (tensor<1x8x8x207xf32>, tensor<3x3x207x16xf32>) -> tensor<1x7x7x16xf32> + func.return %0 : tensor<1x7x7x16xf32> +} + +// CHECK-LABEL: "op_cosine" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_cosine(%arg0: tensor) -> tensor { + // CHECK: "vhlo.cosine_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.cosine"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_create_token" +func.func @op_create_token() -> !stablehlo.token { + // CHECK: "vhlo.create_token_v1"() : () -> !vhlo.token_v1 + %0 = "stablehlo.create_token"() : () -> !stablehlo.token + func.return %0 : !stablehlo.token +} + +// CHECK-LABEL: "op_cross_replica_sum" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_cross_replica_sum(%arg0: tensor) -> tensor { + // CHECK: "vhlo.cross-replica-sum_v1"(%[[ARG0]]) <{ + // CHECK-SAME{LITERAL}: replica_groups = #vhlo.tensor_v1 : tensor<2x1xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.cross-replica-sum"(%arg0) { + replica_groups = dense<[[0], [1]]> : tensor<2x1xi64> + } : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_custom_call" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_custom_call(%arg0: tensor) -> tensor { + // CHECK: "vhlo.custom_call_v1"(%[[ARG0]]) <{ + // CHECK-SAME: api_version = #vhlo, + // CHECK-SAME: backend_config = #vhlo.string_v1<"\08\03\1A\02">, + // CHECK-SAME: call_target_name = #vhlo.string_v1<"foo">, + // CHECK-SAME: called_computations = #vhlo.array_v1<[#vhlo.string_v1<"foo">]>, + // CHECK-SAME: has_side_effect = #vhlo.bool_v1, + // CHECK-SAME: operand_layouts = #vhlo.array_v1<[#vhlo.tensor_v1 : tensor<0xindex>>]>, + // CHECK-SAME: output_operand_aliases = #vhlo.array_v1<[ + // CHECK-SAME: #vhlo.output_operand_alias_v1< + // CHECK-SAME: outputTupleIndices = [], + // CHECK-SAME: operandIndex = 0, + // CHECK-SAME: operandTupleIndices = []>]> + // CHECK-SAME: result_layouts = #vhlo.array_v1<[#vhlo.tensor_v1 : tensor<0xindex>>]> + // CHECK-SAME: }> : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.custom_call"(%arg0) { + call_target_name = "foo", + has_side_effect = true, + backend_config = "\08\03\1A\02", + api_version = 2 : i32, + called_computations = [@foo], + operand_layouts = [dense<> : tensor<0xindex>], + output_operand_aliases = [ + #stablehlo.output_operand_alias], + result_layouts = [dense<> : tensor<0xindex>] + } : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_custom_call_empty_result_layout" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func public @op_custom_call_empty_result_layout(%arg0: tensor) -> tensor { + // %0 = "vhlo.custom_call_v1"(%arg0) <{>}> : (!vhlo.tensor_v1) -> !vhlo.tuple_v1<> + // CHECK: "vhlo.custom_call_v1"(%[[ARG0]]) <{ + // CHECK-SAME: api_version = #vhlo, + // CHECK-SAME: backend_config = #vhlo.string_v1<"">, + // CHECK-SAME: call_target_name = #vhlo.string_v1<"empty_output">, + // CHECK-SAME: called_computations = #vhlo.array_v1<[]>, + // CHECK-SAME: has_side_effect = #vhlo.bool_v1, + // CHECK-SAME: operand_layouts = #vhlo.array_v1<[#vhlo.tensor_v1 : tensor<0xindex>>]>, + // CHECK-SAME: output_operand_aliases = #vhlo.array_v1<[]>, + // CHECK-SAME: result_layouts = #vhlo.array_v1<[]> + // CHECK-SAME: }> : (!vhlo.tensor_v1) -> !vhlo.tuple_v1<> + %0 = "stablehlo.custom_call"(%arg0) <{ + api_version = 2 : i32, + call_target_name = "empty_output", + has_side_effect = true, + operand_layouts = [dense<> : tensor<0xindex>], + result_layouts = [] + }> : (tensor) -> tuple<> + return %arg0 : tensor +} + +// CHECK-LABEL: "op_divide" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_divide(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.divide_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.divide"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_dot_general" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_dot_general(%arg0: tensor<8x8x16xf32>, %arg1: tensor<8x16x8xf32>) -> tensor<8x8x8xf32> { + // CHECK: "vhlo.dot_general_v2"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: accumulation_type = #vhlo.type_v1, + // CHECK-SAME: allow_imprecise_accumulation = #vhlo.type_v1, + // CHECK-SAME: lhs_batching_dimensions = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: lhs_component_count = #vhlo.type_v1, + // CHECK-SAME: lhs_contracting_dimensions = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: lhs_precision_type = #vhlo.type_v1, + // CHECK-SAME: num_primitive_operations = #vhlo.type_v1, + // CHECK-SAME: precision_config = #vhlo.array_v1<[#vhlo, #vhlo]>, + // CHECK-SAME: rhs_batching_dimensions = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: rhs_component_count = #vhlo.type_v1, + // CHECK-SAME: rhs_contracting_dimensions = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: rhs_precision_type = #vhlo.type_v1 + // CHECK-SAME: }> : (!vhlo.tensor_v1<8x8x16x!vhlo.f32_v1>, !vhlo.tensor_v1<8x16x8x!vhlo.f32_v1>) -> !vhlo.tensor_v1<8x8x8x!vhlo.f32_v1> + %0 = "stablehlo.dot_general"(%arg0, %arg1) { + dot_dimension_numbers = #stablehlo.dot< + lhs_batching_dimensions = [0], + lhs_contracting_dimensions = [2], + rhs_batching_dimensions = [0], + rhs_contracting_dimensions = [1] + >, + precision_config = [#stablehlo, #stablehlo] + } : (tensor<8x8x16xf32>, tensor<8x16x8xf32>) -> tensor<8x8x8xf32> + func.return %0 : tensor<8x8x8xf32> +} + +// CHECK-LABEL: "op_dot" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_dot(%arg0: tensor<8x16xf32>, %arg1: tensor<16x8xf32>) -> tensor<8x8xf32> { + // CHECK: "vhlo.dot_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: precision_config = #vhlo.array_v1<[#vhlo, #vhlo]> + // CHECK-SAME: }> : (!vhlo.tensor_v1<8x16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x8x!vhlo.f32_v1>) -> !vhlo.tensor_v1<8x8x!vhlo.f32_v1> + %0 = "stablehlo.dot"(%arg0, %arg1) { + precision_config = [#stablehlo, #stablehlo] + } : (tensor<8x16xf32>, tensor<16x8xf32>) -> tensor<8x8xf32> + func.return %0 : tensor<8x8xf32> +} + +// CHECK-LABEL: "op_dynamic_broadcast_in_dim" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_dynamic_broadcast_in_dim(%arg0: tensor, %arg1: tensor<2xindex>) -> tensor { + // CHECK: "vhlo.dynamic_broadcast_in_dim_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: broadcast_dimensions = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: known_expanding_dimensions = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: known_nonexpanding_dimensions = #vhlo.tensor_v1 : tensor<1xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1, !vhlo.tensor_v1<2x!vhlo.index_v1>) -> !vhlo.tensor_v1 + %0 = "stablehlo.dynamic_broadcast_in_dim"(%arg0, %arg1) { + broadcast_dimensions = array, + known_expanding_dimensions = array, + known_nonexpanding_dimensions = array + } : (tensor, tensor<2xindex>) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_dynamic_conv" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @op_dynamic_conv(%arg0: tensor<1x8x8x207xf32>, %arg1: tensor<3x3x207x16xf32>, %arg2: tensor<2x2xi64>) -> tensor<1x?x?x16xf32> { + // CHECK: "vhlo.dynamic_conv_v2"(%[[ARG0]], %[[ARG1]], %[[ARG2]]) <{ + // CHECK-SAME: batch_group_count = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME: feature_group_count = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME: input_batch_dimension = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME: input_feature_dimension = #vhlo.integer_v1<3 : i64>, + // CHECK-SAME: input_spatial_dimensions = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: kernel_input_feature_dimension = #vhlo.integer_v1<2 : i64>, + // CHECK-SAME: kernel_output_feature_dimension = #vhlo.integer_v1<3 : i64>, + // CHECK-SAME: kernel_spatial_dimensions = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: lhs_dilation = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: output_batch_dimension = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME: output_feature_dimension = #vhlo.integer_v1<3 : i64>, + // CHECK-SAME: output_spatial_dimensions = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: precision_config = #vhlo.array_v1<[#vhlo, #vhlo]>, + // CHECK-SAME: rhs_dilation = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: window_reversal = #vhlo.tensor_v1 : tensor<2xi1>>, + // CHECK-SAME: window_strides = #vhlo.tensor_v1 : tensor<2xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<1x8x8x207x!vhlo.f32_v1>, !vhlo.tensor_v1<3x3x207x16x!vhlo.f32_v1>, !vhlo.tensor_v1<2x2x!vhlo.i64_v1>) -> !vhlo.tensor_v1<1x?x?x16x!vhlo.f32_v1> + %0 = "stablehlo.dynamic_conv"(%arg0, %arg1, %arg2) { + window_strides = array, + lhs_dilation = array, + rhs_dilation = array, + window_reversal = array, + dimension_numbers = #stablehlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>, + feature_group_count = 1 : i64, + batch_group_count = 1 : i64, + precision_config = [#stablehlo, #stablehlo] + } : (tensor<1x8x8x207xf32>, tensor<3x3x207x16xf32>, tensor<2x2xi64>) -> tensor<1x?x?x16xf32> + func.return %0 : tensor<1x?x?x16xf32> +} + +// CHECK-LABEL: "op_dynamic_gather" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @op_dynamic_gather(%arg0 : tensor<2x4x9xf32>, %arg1 : tensor<1x5x2xi32>, %arg2 : tensor<3xi32>) -> tensor<1x5x8xf32> { + // CHECK: "vhlo.dynamic_gather_v2"(%[[ARG0]], %[[ARG1]], %[[ARG2]]) <{ + // CHECK-SAME: collapsed_slice_dims = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: index_vector_dim = #vhlo.integer_v1<2 : i64>, + // CHECK-SAME: indices_are_sorted = #vhlo.bool_v1, + // CHECK-SAME: offset_dims = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: operand_batching_dims = #vhlo.tensor_v1 : tensor<0xi64>>, + // CHECK-SAME: start_index_map = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: start_indices_batching_dims = #vhlo.tensor_v1 : tensor<0xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<2x4x9x!vhlo.f32_v1>, !vhlo.tensor_v1<1x5x2x!vhlo.i32_v1>, !vhlo.tensor_v1<3x!vhlo.i32_v1>) -> !vhlo.tensor_v1<1x5x8x!vhlo.f32_v1> + %0 = "stablehlo.dynamic_gather"(%arg0, %arg1, %arg2) { + dimension_numbers = #stablehlo.gather< + offset_dims = [2], + collapsed_slice_dims = [0, 1], + start_index_map = [0, 1], + index_vector_dim = 2 + >, + indices_are_sorted = true + } : (tensor<2x4x9xf32>, tensor<1x5x2xi32>, tensor<3xi32>) -> tensor<1x5x8xf32> + func.return %0 : tensor<1x5x8xf32> +} + +// CHECK-LABEL: "op_dynamic_gather_with_batching_dims" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @op_dynamic_gather_with_batching_dims(%arg0 : tensor<5x2x4x9xf32>, %arg1 : tensor<1x5x2xi32>, %arg2 : tensor<4xi32>) -> tensor<1x5x8xf32> { + // CHECK: "vhlo.dynamic_gather_v2"(%[[ARG0]], %[[ARG1]], %[[ARG2]]) <{ + // CHECK-SAME: collapsed_slice_dims = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: index_vector_dim = #vhlo.integer_v1<2 : i64>, + // CHECK-SAME: indices_are_sorted = #vhlo.bool_v1, + // CHECK-SAME: offset_dims = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: operand_batching_dims = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: start_index_map = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: start_indices_batching_dims = #vhlo.tensor_v1 : tensor<1xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<5x2x4x9x!vhlo.f32_v1>, !vhlo.tensor_v1<1x5x2x!vhlo.i32_v1>, !vhlo.tensor_v1<4x!vhlo.i32_v1>) -> !vhlo.tensor_v1<1x5x8x!vhlo.f32_v1> + %0 = "stablehlo.dynamic_gather"(%arg0, %arg1, %arg2) { + dimension_numbers = #stablehlo.gather< + offset_dims = [2], + collapsed_slice_dims = [1, 2], + operand_batching_dims = [0], + start_indices_batching_dims = [1], + start_index_map = [1, 2], + index_vector_dim = 2 + >, + indices_are_sorted = true + } : (tensor<5x2x4x9xf32>, tensor<1x5x2xi32>, tensor<4xi32>) -> tensor<1x5x8xf32> + func.return %0 : tensor<1x5x8xf32> +} + +// CHECK-LABEL: "op_dynamic_iota" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_dynamic_iota(%arg0: tensor<1xindex>) -> tensor { + // CHECK: "vhlo.dynamic_iota_v1"(%[[ARG0]]) <{ + // CHECK-SAME: iota_dimension = #vhlo.integer_v1<0 : i64> + // CHECK-SAME: }> : (!vhlo.tensor_v1<1x!vhlo.index_v1>) -> !vhlo.tensor_v1 + %0 = "stablehlo.dynamic_iota"(%arg0) { + iota_dimension = 0 : i64 + } : (tensor<1xindex>) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_dynamic_pad" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}, %[[ARG3:.*]]: {{.*}}, %[[ARG4:.*]]: {{.*}}) +func.func @op_dynamic_pad(%arg0: tensor, %arg1: tensor, %arg2: tensor<1xindex>, %arg3: tensor<1xindex>, %arg4: tensor<1xindex>) -> tensor { + // CHECK: "vhlo.dynamic_pad_v1"(%[[ARG0]], %[[ARG1]], %[[ARG2]], %[[ARG3]], %[[ARG4]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1, !vhlo.tensor_v1<1x!vhlo.index_v1>, !vhlo.tensor_v1<1x!vhlo.index_v1>, !vhlo.tensor_v1<1x!vhlo.index_v1>) -> !vhlo.tensor_v1 + %0 = "stablehlo.dynamic_pad"(%arg0, %arg1, %arg2, %arg3, %arg4) : (tensor, tensor, tensor<1xindex>, tensor<1xindex>, tensor<1xindex>) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_dynamic_reshape" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_dynamic_reshape(%arg0: tensor<16xf32>, %arg1: tensor<2xindex>) -> tensor { + // CHECK: "vhlo.dynamic_reshape_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1<16x!vhlo.f32_v1>, !vhlo.tensor_v1<2x!vhlo.index_v1>) -> !vhlo.tensor_v1 + %0 = "stablehlo.dynamic_reshape"(%arg0, %arg1) : (tensor<16xf32>, tensor<2xindex>) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_dynamic_slice" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_dynamic_slice(%arg0: tensor<16xf32>, %arg1: tensor) -> tensor<4xf32> { + // CHECK: "vhlo.dynamic_slice_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: slice_sizes = #vhlo.tensor_v1 : tensor<1xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<16x!vhlo.f32_v1>, !vhlo.tensor_v1) -> !vhlo.tensor_v1<4x!vhlo.f32_v1> + %0 = "stablehlo.dynamic_slice"(%arg0, %arg1) { + slice_sizes = array + } : (tensor<16xf32>, tensor) -> tensor<4xf32> + func.return %0 : tensor<4xf32> +} + +// CHECK-LABEL: "op_dynamic_update_slice" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @op_dynamic_update_slice(%arg0: tensor<16xf32>, %arg1: tensor<4xf32>, %arg2: tensor) -> tensor<16xf32> { + // CHECK: "vhlo.dynamic_update_slice_v1"(%[[ARG0]], %[[ARG1]], %[[ARG2]]) : (!vhlo.tensor_v1<16x!vhlo.f32_v1>, !vhlo.tensor_v1<4x!vhlo.f32_v1>, !vhlo.tensor_v1) -> !vhlo.tensor_v1<16x!vhlo.f32_v1> + %0 = "stablehlo.dynamic_update_slice"(%arg0, %arg1, %arg2) : (tensor<16xf32>, tensor<4xf32>, tensor) -> tensor<16xf32> + func.return %0 : tensor<16xf32> +} + +// CHECK-LABEL: "op_einsum" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_einsum(%arg0: tensor<8x16xf32>, %arg1: tensor<16x8xf32>) -> tensor<8x8xf32> { + // CHECK: "vhlo.einsum_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: einsum_config = #vhlo.string_v1<"ab,bc->ac"> + // CHECK-SAME: }> : (!vhlo.tensor_v1<8x16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x8x!vhlo.f32_v1>) -> !vhlo.tensor_v1<8x8x!vhlo.f32_v1> + %0 = "stablehlo.einsum"(%arg0, %arg1) { + einsum_config = "ab,bc->ac" + } : (tensor<8x16xf32>, tensor<16x8xf32>) -> tensor<8x8xf32> + func.return %0 : tensor<8x8xf32> +} + +// CHECK-LABEL: "op_exponential_minus_one" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_exponential_minus_one(%arg0: tensor) -> tensor { + // CHECK: "vhlo.exponential_minus_one_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.exponential_minus_one"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_exponential" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_exponential(%arg0: tensor) -> tensor { + // CHECK: "vhlo.exponential_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.exponential"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_fft" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_fft(%arg0: tensor<16xcomplex>) -> tensor<16xcomplex> { + // CHECK: "vhlo.fft_v1"(%[[ARG0]]) <{ + // CHECK-SAME: fft_length = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: fft_type = #vhlo + // CHECK-SAME: }> : (!vhlo.tensor_v1<16x!vhlo.complex_v1>) -> !vhlo.tensor_v1<16x!vhlo.complex_v1> + %0 = "stablehlo.fft"(%arg0) { + fft_type = #stablehlo, + fft_length = array + } : (tensor<16xcomplex>) -> tensor<16xcomplex> + func.return %0 : tensor<16xcomplex> +} + +// CHECK-LABEL: "op_floor" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_floor(%arg0: tensor) -> tensor { + // CHECK: "vhlo.floor_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.floor"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +func.func private @op_func(%arg0: tensor {stablehlo.arg = "0"}) -> (tensor {stablehlo.result = "0"}) { + // CHECK: "vhlo.func_v1"() <{ + // CHECK-SAME: arg_attrs = #vhlo.array_v1<[#vhlo.dict_v1<{#vhlo.string_v1<"stablehlo.arg"> = #vhlo.string_v1<"0">}>]>, + // CHECK-SAME: function_type = #vhlo.type_v1) -> !vhlo.tensor_v1>>, + // CHECK-SAME: res_attrs = #vhlo.array_v1<[#vhlo.dict_v1<{#vhlo.string_v1<"stablehlo.result"> = #vhlo.string_v1<"0">}>]>, + // CHECK-SAME: sym_name = #vhlo.string_v1<"op_func">, + // CHECK-SAME: sym_visibility = #vhlo.string_v1<"private"> + // CHECK-SAME: }> ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG0:.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: "vhlo.return_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : () -> () + + func.return %arg0 : tensor +} + +// CHECK-LABEL: "op_gather" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_gather(%arg0 : tensor<2x4x9xf32>, %arg1 : tensor<1x5x2xi32>) -> tensor<1x5x1xf32> { + // CHECK: "vhlo.gather_v2"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: collapsed_slice_dims = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: index_vector_dim = #vhlo.integer_v1<2 : i64>, + // CHECK-SAME: indices_are_sorted = #vhlo.bool_v1, + // CHECK-SAME: offset_dims = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: operand_batching_dims = #vhlo.tensor_v1 : tensor<0xi64>>, + // CHECK-SAME: slice_sizes = #vhlo.tensor_v1 : tensor<3xi64>>, + // CHECK-SAME: start_index_map = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: start_indices_batching_dims = #vhlo.tensor_v1 : tensor<0xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<2x4x9x!vhlo.f32_v1>, !vhlo.tensor_v1<1x5x2x!vhlo.i32_v1>) -> !vhlo.tensor_v1<1x5x1x!vhlo.f32_v1> + %0 = "stablehlo.gather"(%arg0, %arg1) { + dimension_numbers = #stablehlo.gather< + offset_dims = [2], + collapsed_slice_dims = [0, 1], + start_index_map = [0, 1], + index_vector_dim = 2 + >, + slice_sizes = array, + indices_are_sorted = true + } : (tensor<2x4x9xf32>, tensor<1x5x2xi32>) -> tensor<1x5x1xf32> + func.return %0 : tensor<1x5x1xf32> +} + +// CHECK-LABEL: "op_gather_with_batching_dims" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_gather_with_batching_dims(%arg0 : tensor<5x2x4x9xf32>, %arg1 : tensor<1x5x2xi32>) -> tensor<1x5x1xf32> { + // CHECK: "vhlo.gather_v2"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: collapsed_slice_dims = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: index_vector_dim = #vhlo.integer_v1<2 : i64>, + // CHECK-SAME: indices_are_sorted = #vhlo.bool_v1, + // CHECK-SAME: offset_dims = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: operand_batching_dims = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: slice_sizes = #vhlo.tensor_v1 : tensor<4xi64>>, + // CHECK-SAME: start_index_map = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: start_indices_batching_dims = #vhlo.tensor_v1 : tensor<1xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<5x2x4x9x!vhlo.f32_v1>, !vhlo.tensor_v1<1x5x2x!vhlo.i32_v1>) -> !vhlo.tensor_v1<1x5x1x!vhlo.f32_v1> + %0 = "stablehlo.gather"(%arg0, %arg1) { + dimension_numbers = #stablehlo.gather< + offset_dims = [2], + collapsed_slice_dims = [1, 2], + operand_batching_dims = [0], + start_indices_batching_dims = [1], + start_index_map = [1, 2], + index_vector_dim = 2 + >, + slice_sizes = array, + indices_are_sorted = true + } : (tensor<5x2x4x9xf32>, tensor<1x5x2xi32>) -> tensor<1x5x1xf32> + func.return %0 : tensor<1x5x1xf32> +} + +// CHECK-LABEL: "op_get_dimension_size" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_get_dimension_size(%arg0: tensor) -> tensor { + // CHECK: "vhlo.get_dimension_size_v1"(%[[ARG0]]) <{ + // CHECK-SAME: dimension = #vhlo.integer_v1<0 : i64> + // CHECK-SAME: }> : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.get_dimension_size"(%arg0) { + dimension = 0 : i64 + } : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_get_tuple_element" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_get_tuple_element(%arg0: tuple, tensor>) -> tensor { + // CHECK: "vhlo.get_tuple_element_v1"(%[[ARG0]]) <{ + // CHECK-SAME: index = #vhlo.integer_v1<0 : i32> + // CHECK-SAME: }> : (!vhlo.tuple_v1, !vhlo.tensor_v1>) -> !vhlo.tensor_v1 + %0 = "stablehlo.get_tuple_element"(%arg0) { + index = 0 : i32 + } : (tuple, tensor>) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_if" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @op_if(%arg0: tensor, %arg1: tensor, %arg2: tensor) -> tensor { + // CHECK: "vhlo.if_v1"(%[[ARG0]]) ({ + // CHECK-NEXT: "vhlo.return_v1"(%[[ARG1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }, { + // CHECK-NEXT: "vhlo.return_v1"(%[[ARG2]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.if"(%arg0) ({ + "stablehlo.return"(%arg1) : (tensor) -> () + }, { + "stablehlo.return"(%arg2) : (tensor) -> () + }) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_imag" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_imag(%arg0: tensor>) -> tensor { + // CHECK: "vhlo.imag_v1"(%[[ARG0]]) : (!vhlo.tensor_v1>) -> !vhlo.tensor_v1 + %0 = "stablehlo.imag"(%arg0) : (tensor>) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_infeed" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_infeed(%arg0: !stablehlo.token) -> (tensor, !stablehlo.token) { + // CHECK: "vhlo.infeed_v1"(%[[ARG0]]) <{ + // CHECK-SAME: infeed_config = #vhlo.string_v1<"foo">, + // CHECK-SAME{LITERAL}: layout = #vhlo.array_v1<[#vhlo.array_v1<[]>]> + // CHECK-SAME: }> : (!vhlo.token_v1) -> (!vhlo.tensor_v1, !vhlo.token_v1) + %0:2 = "stablehlo.infeed"(%arg0) { + infeed_config = "foo", + layout = [[]] + } : (!stablehlo.token) -> (tensor, !stablehlo.token) + func.return %0#0, %0#1 : tensor, !stablehlo.token +} + +// CHECK-LABEL: "op_iota" +func.func @op_iota() -> tensor<16xf32> { + // CHECK: "vhlo.iota_v1"() <{ + // CHECK-SAME: iota_dimension = #vhlo.integer_v1<0 : i64> + // CHECK-SAME: }> : () -> !vhlo.tensor_v1<16x!vhlo.f32_v1> + %0 = "stablehlo.iota"() { + iota_dimension = 0 : i64 + } : () -> tensor<16xf32> + func.return %0 : tensor<16xf32> +} + +// CHECK-LABEL: "op_is_finite" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_is_finite(%arg0: tensor) -> tensor { + // CHECK: "vhlo.is_finite_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.is_finite"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_log" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_log(%arg0: tensor) -> tensor { + // CHECK: "vhlo.log_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.log"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_log_plus_one" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_log_plus_one(%arg0: tensor) -> tensor { + // CHECK: "vhlo.log_plus_one_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.log_plus_one"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_logistic" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_logistic(%arg0: tensor) -> tensor { + // CHECK: "vhlo.logistic_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.logistic"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_map" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_map(%arg0: tensor<16xf32>) -> tensor<16xf32> { + // CHECK: "vhlo.map_v1"(%[[ARG0]]) <{ + // CHECK-SAME: dimensions = #vhlo.tensor_v1 : tensor<1xi64>> + // CHECK-SAME: }> ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG1:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: %[[VAL1:.*]] = "vhlo.abs_v1"(%[[ARG1]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + // CHECK-NEXT: "vhlo.return_v1"(%[[VAL1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1<16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x!vhlo.f32_v1> + %0 = "stablehlo.map"(%arg0) ({ + ^bb0(%arg1: tensor): + %1 = "stablehlo.abs"(%arg1) : (tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }) { + dimensions = array + } : (tensor<16xf32>) -> tensor<16xf32> + func.return %0 : tensor<16xf32> +} + +// CHECK-LABEL: "op_maximum" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_maximum(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.maximum_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.maximum"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_minimum" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_minimum(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.minimum_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.minimum"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_multiply" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_multiply(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.multiply_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.multiply"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_negate" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_negate(%arg0: tensor) -> tensor { + // CHECK: "vhlo.negate_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.negate"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_not" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_not(%arg0: tensor) -> tensor { + // CHECK: "vhlo.not_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.not"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_optimization_barrier" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_optimization_barrier(%arg0: tensor) -> tensor { + // CHECK: "vhlo.optimization_barrier_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.optimization_barrier"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_or" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_or(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.or_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.or"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_outfeed" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_outfeed(%arg0: tensor, %arg1: !stablehlo.token) -> !stablehlo.token { + // CHECK: "vhlo.outfeed_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: outfeed_config = #vhlo.string_v1<"foo"> + // CHECK-SAME: }> : (!vhlo.tensor_v1, !vhlo.token_v1) -> !vhlo.token_v1 + %0 = "stablehlo.outfeed"(%arg0, %arg1) { + outfeed_config = "foo" + } : (tensor, !stablehlo.token) -> !stablehlo.token + func.return %0 : !stablehlo.token +} + +// CHECK-LABEL: "op_pad" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_pad(%arg0: tensor<8xf32>, %arg1: tensor) -> tensor<16xf32> { + // CHECK: "vhlo.pad_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: edge_padding_high = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: edge_padding_low = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: interior_padding = #vhlo.tensor_v1 : tensor<1xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<8x!vhlo.f32_v1>, !vhlo.tensor_v1) -> !vhlo.tensor_v1<16x!vhlo.f32_v1> + %0 = "stablehlo.pad"(%arg0, %arg1) { + edge_padding_high = array, + edge_padding_low = array, + interior_padding = array + } : (tensor<8xf32>, tensor) -> tensor<16xf32> + func.return %0 : tensor<16xf32> +} + +// CHECK-LABEL: "op_popcnt" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_popcnt(%arg0: tensor) -> tensor { + // CHECK: "vhlo.popcnt_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.popcnt"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_power" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_power(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.power_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.power"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_real_dynamic_slice" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}, %[[ARG3:.*]]: {{.*}}) +func.func @op_real_dynamic_slice(%arg0: tensor, %arg1: tensor<1xindex>, %arg2: tensor<1xindex>, %arg3: tensor<1xindex>) -> tensor { + // CHECK: "vhlo.real_dynamic_slice_v1"(%[[ARG0]], %[[ARG1]], %[[ARG2]], %[[ARG3]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1<1x!vhlo.index_v1>, !vhlo.tensor_v1<1x!vhlo.index_v1>, !vhlo.tensor_v1<1x!vhlo.index_v1>) -> !vhlo.tensor_v1 + %0 = "stablehlo.real_dynamic_slice"(%arg0, %arg1, %arg2, %arg3) : (tensor, tensor<1xindex>, tensor<1xindex>, tensor<1xindex>) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_real" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_real(%arg0: tensor>) -> tensor { + // CHECK: "vhlo.real_v1"(%[[ARG0]]) : (!vhlo.tensor_v1>) -> !vhlo.tensor_v1 + %0 = "stablehlo.real"(%arg0) : (tensor>) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_recv" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_recv(%arg0: !stablehlo.token) -> (tensor, !stablehlo.token) { + // CHECK: "vhlo.recv_v1"(%[[ARG0]]) <{ + // CHECK-SAME: channel_id = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME: channel_type = #vhlo.integer_v1<3 : i64>, + // CHECK-SAME: is_host_transfer = #vhlo.bool_v1 + // CHECK-SAME: }> : (!vhlo.token_v1) -> (!vhlo.tensor_v1, !vhlo.token_v1) + %0:2 = "stablehlo.recv"(%arg0) { + channel_handle = #stablehlo.channel_handle, + is_host_transfer = true + } : (!stablehlo.token) -> (tensor, !stablehlo.token) + func.return %0#0, %0#1 : tensor, !stablehlo.token +} + +// CHECK-LABEL: "op_reduce" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_reduce(%arg0: tensor<16xf32>, %arg1: tensor) -> tensor { + // CHECK: "vhlo.reduce_v1"(%[[ARG0]], %[[ARG1]]) + // CHECK: ^[[BB:bb.*]](%[[ARG1:arg.*]]: !vhlo.tensor_v1, %[[ARG2:arg.*]]: !vhlo.tensor_v1): + // CHECK: "vhlo.return_v1"(%[[VAL1:.*]]) : (!vhlo.tensor_v1) -> () + // CHECK: }) : (!vhlo.tensor_v1<16x!vhlo.f32_v1>, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.reduce"(%arg0, %arg1) ({ + ^bb0(%arg2: tensor, %arg3: tensor): + %1 = "stablehlo.add"(%arg2, %arg3) : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }) { + dimensions = array + } : (tensor<16xf32>, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_reduce_precision" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_reduce_precision(%arg0: tensor) -> tensor { + // CHECK: "vhlo.reduce_precision_v1"(%[[ARG0]]) <{ + // CHECK-SAME: exponent_bits = #vhlo.integer_v1<8 : i32> + // CHECK-SAME: mantissa_bits = #vhlo.integer_v1<10 : i32> + // CHECK-SAME: }> : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.reduce_precision"(%arg0) { + exponent_bits = 8 : i32, + mantissa_bits = 10 : i32 + } : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK_lABEL: "op_reduce_with_promotable_types" +func.func @op_reduce_with_promotable_types(%arg0: tensor<4x4xf32>, %arg1 : tensor) + -> (tensor<4xf64>) { + // CHECK: "vhlo.reduce_v1"(%[[ARG0:.*]], %[[ARG1:.*]]) + // CHECK: ^[[BB:bb.*]](%[[ARG1:arg.*]]: !vhlo.tensor_v1, %[[ARG2:arg.*]]: !vhlo.tensor_v1): + // CHECK: "vhlo.return_v1"(%[[VAL1:.*]]) : (!vhlo.tensor_v1) -> () + // CHECK: }) : (!vhlo.tensor_v1<4x4x!vhlo.f32_v1>, !vhlo.tensor_v1) -> !vhlo.tensor_v1<4x!vhlo.f64_v1> + %0 = "stablehlo.reduce"(%arg0, %arg1) ({ + ^bb0(%arg2: tensor, %arg3: tensor ): + %1 = "stablehlo.add"(%arg2, %arg3) : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + + }) {dimensions = array} : (tensor<4x4xf32>, tensor) -> tensor<4xf64> + + func.return %0: tensor<4xf64> +} + +// CHECK-LABEL: "op_reduce_scatter" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_reduce_scatter(%arg0: tensor<16xf32>) -> tensor<16xf32> { + // CHECK: "vhlo.reduce_scatter_v1"(%[[ARG0]]) <{ + // CHECK-SAME: channel_id = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME{LITERAL}: replica_groups = #vhlo.tensor_v1 : tensor<2x1xi64>>, + // CHECK-SAME: scatter_dimension = #vhlo.integer_v1<0 : i64> + // CHECK-SAME: use_global_device_ids = #vhlo.bool_v1 + // CHECK-SAME: }> ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG1:arg.*]]: !vhlo.tensor_v1, %[[ARG2:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: %[[VAL1:.*]] = "vhlo.add_v1"(%[[ARG1]], %[[ARG2]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + // CHECK-NEXT: "vhlo.return_v1"(%[[VAL1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1<16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x!vhlo.f32_v1> + %0 = "stablehlo.reduce_scatter"(%arg0) ({ + ^bb0(%arg1: tensor, %arg2: tensor): + %1 = "stablehlo.add"(%arg1, %arg2) : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }) { + scatter_dimension = 0 : i64, + replica_groups = dense<[[0], [1]]> : tensor<2x1xi64>, + channel_handle = #stablehlo.channel_handle, + use_global_device_ids + } : (tensor<16xf32>) -> tensor<16xf32> + func.return %0 : tensor<16xf32> +} + +// CHECK_lABEL: "op_reduce_scatter_with_promotable_types" +func.func @op_reduce_scatter_with_promotable_types(%data: tensor<4x16xf32>) -> tensor<4x4xf64> { + // CHECK: "vhlo.reduce_scatter_v1"(%[[ARG0:.*]]) + // CHECK: ^[[BB:bb.*]](%[[ARG1:arg.*]]: !vhlo.tensor_v1, %[[ARG2:arg.*]]: !vhlo.tensor_v1): + // CHECK: "vhlo.return_v1"(%[[VAL1:.*]]) : (!vhlo.tensor_v1) -> () + // CHECK: }) : (!vhlo.tensor_v1<4x16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<4x4x!vhlo.f64_v1> + %0 = "stablehlo.reduce_scatter"(%data) ({ + ^bb0(%arg2: tensor, %arg3: tensor): + %1 = stablehlo.add %arg2, %arg3 : tensor + "stablehlo.return"(%1) : (tensor) -> () + }) {replica_groups = dense<[[0, 1, 2, 3]]> : tensor<1x4xi64>, + scatter_dimension = 1 : i64, + channel_handle = #stablehlo.channel_handle, + use_global_device_ids} : (tensor<4x16xf32>) -> tensor<4x4xf64> + func.return %0 : tensor<4x4xf64> +} + + +// CHECK-LABEL: "op_reduce_window" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_reduce_window(%arg0: tensor<2x17x31x7xf32>, %arg1: tensor) -> tensor<2x9x16x7xf32> { + // CHECK: "vhlo.reduce_window_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: base_dilations = #vhlo.tensor_v1 : tensor<4xi64>>, + // CHECK-SAME{LITERAL}: padding = #vhlo.tensor_v1 : tensor<4x2xi64>>, + // CHECK-SAME: window_dilations = #vhlo.tensor_v1 : tensor<4xi64>>, + // CHECK-SAME: window_dimensions = #vhlo.tensor_v1 : tensor<4xi64>>, + // CHECK-SAME: window_strides = #vhlo.tensor_v1 : tensor<4xi64>> + // CHECK-SAME: }> ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG2:arg.*]]: !vhlo.tensor_v1, %[[ARG3:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: %[[VAL1:.*]] = "vhlo.maximum_v1"(%[[ARG2]], %[[ARG3]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + // CHECK-NEXT: "vhlo.return_v1"(%[[VAL1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1<2x17x31x7x!vhlo.f32_v1>, !vhlo.tensor_v1) -> !vhlo.tensor_v1<2x9x16x7x!vhlo.f32_v1> + %0 = "stablehlo.reduce_window"(%arg0, %arg1) ({ + ^bb0(%arg2: tensor, %arg3: tensor): + %1 = "stablehlo.maximum"(%arg2, %arg3) : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }) { + window_dimensions = array, + window_strides = array, + base_dilations = array, + window_dilations = array, + padding = dense<[[0, 0], [2, 0], [0, 2], [0, 0]]> : tensor<4x2xi64> + } : (tensor<2x17x31x7xf32>, tensor) -> tensor<2x9x16x7xf32> + func.return %0 : tensor<2x9x16x7xf32> +} + +// CHECK-LABEL: "op_reduce_window_with_promotable_types" +func.func @op_reduce_window_with_promotable_types(%arg0: tensor<4x2xf32>, + %arg1: tensor<4x2xf32>, %init0: tensor, %init1: tensor) -> + (tensor<2x2xf64>, tensor<2x2xf32>) { + // CHECK: "vhlo.reduce_window_v1"(%[[ARG0:.*]], %[[ARG1:.*]], %[[ARG2:.*]], %[[ARG3:.*]]) + // CHECK: ^[[BB:bb.*]](%[[ARG1:arg.*]]: !vhlo.tensor_v1, %[[ARG2:arg.*]]: !vhlo.tensor_v1, %[[ARG3:arg.*]]: !vhlo.tensor_v1, %[[ARG4:arg.*]]: !vhlo.tensor_v1): + // CHECK: "vhlo.return_v1"(%[[VAL1:.*]], %[[VAL2:.*]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> () + // CHECK: }) : (!vhlo.tensor_v1<4x2x!vhlo.f32_v1>, !vhlo.tensor_v1<4x2x!vhlo.f32_v1>, !vhlo.tensor_v1, !vhlo.tensor_v1) -> (!vhlo.tensor_v1<2x2x!vhlo.f64_v1>, !vhlo.tensor_v1<2x2x!vhlo.f32_v1>) + %0:2 = "stablehlo.reduce_window"(%arg0, %arg1, %init0, %init1) ({ + ^bb0(%a0: tensor, %a1: tensor, %b0: tensor, + %b1: tensor): + %2 = stablehlo.add %a0, %b0 : tensor + %3 = stablehlo.add %a1, %b1 : tensor + "stablehlo.return"(%2,%3) : (tensor, tensor) -> () + }) + { padding = dense<[[2, 2], [0, 0]]> : tensor<2x2xi64>, + window_dimensions = array, + window_strides = array } + : (tensor<4x2xf32>, tensor<4x2xf32>, tensor, tensor) -> + (tensor<2x2xf64>, tensor<2x2xf32>) + func.return %0#0, %0#1 : tensor<2x2xf64>, tensor<2x2xf32> +} + +// CHECK-LABEL: "op_remainder" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_remainder(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.remainder_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.remainder"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_replica_id" +func.func @op_replica_id() -> tensor { + // CHECK: "vhlo.replica_id_v1"() : () -> !vhlo.tensor_v1 + %0 = "stablehlo.replica_id"() : () -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_partition_id" +func.func @op_partition_id() -> tensor { + // CHECK: "vhlo.partition_id_v1"() : () -> !vhlo.tensor_v1 + %0 = "stablehlo.partition_id"() : () -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_reshape" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_reshape(%arg0: tensor<16xf32>) -> tensor<4x4xf32> { + // CHECK: "vhlo.reshape_v1"(%[[ARG0]]) : (!vhlo.tensor_v1<16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<4x4x!vhlo.f32_v1> + %0 = "stablehlo.reshape"(%arg0) : (tensor<16xf32>) -> tensor<4x4xf32> + func.return %0 : tensor<4x4xf32> +} + +// CHECK-LABEL: "op_return" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_return(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.case_v1"(%[[ARG0]]) ({ + // CHECK-NEXT: "vhlo.return_v1"(%[[ARG1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.case"(%arg0) ({ + "stablehlo.return"(%arg1) : (tensor) -> () + }) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_reverse" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_reverse(%arg0: tensor<16xf32>) -> tensor<16xf32> { + // CHECK: "vhlo.reverse_v1"(%[[ARG0]]) <{ + // CHECK-SAME: dimensions = #vhlo.tensor_v1 : tensor<1xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x!vhlo.f32_v1> + %0 = "stablehlo.reverse"(%arg0) { + dimensions = array + } : (tensor<16xf32>) -> tensor<16xf32> + func.return %0 : tensor<16xf32> +} + +// CHECK-LABEL: "op_rng_bit_generator" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_rng_bit_generator(%arg0: tensor) -> (tensor, tensor) { + // CHECK: "vhlo.rng_bit_generator_v1"(%[[ARG0]]) <{ + // CHECK-SAME: rng_algorithm = #vhlo + // CHECK-SAME: }> : (!vhlo.tensor_v1) -> (!vhlo.tensor_v1, !vhlo.tensor_v1) + %0:2 = "stablehlo.rng_bit_generator"(%arg0) { + rng_algorithm = #stablehlo + } : (tensor) -> (tensor, tensor) + func.return %0#0, %0#1 : tensor, tensor +} + +// CHECK-LABEL: "op_rng" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @op_rng(%arg0: tensor, %arg1: tensor, %arg2: tensor<0xindex>) -> tensor { + // CHECK: "vhlo.rng_v1"(%[[ARG0]], %[[ARG1]], %[[ARG2]]) <{ + // CHECK-SAME: rng_distribution = #vhlo + // CHECK-SAME: }> : (!vhlo.tensor_v1, !vhlo.tensor_v1, !vhlo.tensor_v1<0x!vhlo.index_v1>) -> !vhlo.tensor_v1 + %0 = "stablehlo.rng"(%arg0, %arg1, %arg2) { + rng_distribution = #stablehlo + } : (tensor, tensor, tensor<0xindex>) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_round_nearest_afz" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_round_nearest_afz(%arg0: tensor) -> tensor { + // CHECK: "vhlo.round_nearest_afz_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.round_nearest_afz"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_round_nearest_even" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_round_nearest_even(%arg0: tensor) -> tensor { + // CHECK: "vhlo.round_nearest_even_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.round_nearest_even"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_rsqrt" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_rsqrt(%arg0: tensor) -> tensor { + // CHECK: "vhlo.rsqrt_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.rsqrt"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_scatter" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @op_scatter(%arg0: tensor<200x100x300xf32>, %arg1: tensor<10x2xi32>, %arg2: tensor<10x300xf32>) -> tensor<200x100x300xf32> { + // CHECK: "vhlo.scatter_v2"(%[[ARG0]], %[[ARG1]], %[[ARG2]]) <{ + // CHECK-SAME: index_vector_dim = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME: indices_are_sorted = #vhlo.bool_v1, + // CHECK-SAME: input_batching_dims = #vhlo.tensor_v1 : tensor<0xi64>>, + // CHECK-SAME: inserted_window_dims = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: scatter_dims_to_operand_dims = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: scatter_indices_batching_dims = #vhlo.tensor_v1 : tensor<0xi64>>, + // CHECK-SAME: unique_indices = #vhlo.bool_v1, + // CHECK-SAME: update_window_dims = #vhlo.tensor_v1 : tensor<1xi64>> + // CHECK-SAME: }> ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG3:arg.*]]: !vhlo.tensor_v1, %[[ARG4:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: %[[VAL1:.*]] = "vhlo.add_v1"(%[[ARG3]], %[[ARG4]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + // CHECK-NEXT: "vhlo.return_v1"(%[[VAL1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1<200x100x300x!vhlo.f32_v1>, !vhlo.tensor_v1<10x2x!vhlo.i32_v1>, !vhlo.tensor_v1<10x300x!vhlo.f32_v1>) -> !vhlo.tensor_v1<200x100x300x!vhlo.f32_v1> + %0 = "stablehlo.scatter"(%arg0, %arg1, %arg2) ({ + ^bb0(%arg3: tensor, %arg4: tensor): + %1 = "stablehlo.add"(%arg3, %arg4) : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }) { + scatter_dimension_numbers = #stablehlo.scatter< + update_window_dims = [1], + inserted_window_dims = [0, 1], + scatter_dims_to_operand_dims = [0, 1], + index_vector_dim = 1 + >, + indices_are_sorted = true, + unique_indices = true + } : (tensor<200x100x300xf32>, tensor<10x2xi32>, tensor<10x300xf32>) -> tensor<200x100x300xf32> + func.return %0 : tensor<200x100x300xf32> +} + +// CHECK-LABEL: "op_scatter_with_batching_dims" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @op_scatter_with_batching_dims(%arg0: tensor<10x200x100x300xf32>, %arg1: tensor<10x2xi32>, %arg2: tensor<10x300xf32>) -> tensor<10x200x100x300xf32> { + // CHECK: "vhlo.scatter_v2"(%[[ARG0]], %[[ARG1]], %[[ARG2]]) <{ + // CHECK-SAME: index_vector_dim = #vhlo.integer_v1<1 : i64>, + // CHECK-SAME: indices_are_sorted = #vhlo.bool_v1, + // CHECK-SAME: input_batching_dims = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: inserted_window_dims = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: scatter_dims_to_operand_dims = #vhlo.tensor_v1 : tensor<2xi64>>, + // CHECK-SAME: scatter_indices_batching_dims = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: unique_indices = #vhlo.bool_v1, + // CHECK-SAME: update_window_dims = #vhlo.tensor_v1 : tensor<1xi64>> + // CHECK-SAME: }> ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG3:arg.*]]: !vhlo.tensor_v1, %[[ARG4:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: %[[VAL1:.*]] = "vhlo.add_v1"(%[[ARG3]], %[[ARG4]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + // CHECK-NEXT: "vhlo.return_v1"(%[[VAL1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1<10x200x100x300x!vhlo.f32_v1>, !vhlo.tensor_v1<10x2x!vhlo.i32_v1>, !vhlo.tensor_v1<10x300x!vhlo.f32_v1>) -> !vhlo.tensor_v1<10x200x100x300x!vhlo.f32_v1> + %0 = "stablehlo.scatter"(%arg0, %arg1, %arg2) ({ + ^bb0(%arg3: tensor, %arg4: tensor): + %1 = "stablehlo.add"(%arg3, %arg4) : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }) { + scatter_dimension_numbers = #stablehlo.scatter< + update_window_dims = [1], + inserted_window_dims = [1, 2], + input_batching_dims = [0], + scatter_dims_to_operand_dims = [1, 2], + scatter_indices_batching_dims = [0], + index_vector_dim = 1 + >, + indices_are_sorted = true, + unique_indices = true + } : (tensor<10x200x100x300xf32>, tensor<10x2xi32>, tensor<10x300xf32>) -> tensor<10x200x100x300xf32> + func.return %0 : tensor<10x200x100x300xf32> +} + +// CHECK_lABEL: "op_scatter_with_promotable_types" +func.func @op_scatter_with_promotable_types(%input_tensor: tensor<200x100x300xf32>, + %scatter_indices: tensor<10x2xi32>, %updates: tensor<10x300xf32>) -> + tensor<200x100x300xf64> { + // CHECK: "vhlo.scatter_v2"(%[[ARG0:.*]], %[[ARG1:.*]], %[[ARG2:.*]]) + // CHECK: ^[[BB:bb.*]](%[[ARG1:arg.*]]: !vhlo.tensor_v1, %[[ARG2:arg.*]]: !vhlo.tensor_v1): + // CHECK: "vhlo.return_v1"(%[[VAL1:.*]]) : (!vhlo.tensor_v1) -> () + // CHECK: }) : (!vhlo.tensor_v1<200x100x300x!vhlo.f32_v1>, !vhlo.tensor_v1<10x2x!vhlo.i32_v1>, !vhlo.tensor_v1<10x300x!vhlo.f32_v1>) -> !vhlo.tensor_v1<200x100x300x!vhlo.f64_v1> + %0 = "stablehlo.scatter" (%input_tensor, %scatter_indices, %updates) ({ + ^bb0(%lhs: tensor, %rhs: tensor): + %add = stablehlo.add %lhs, %rhs : tensor + "stablehlo.return"(%add) : (tensor) -> () + }) { + scatter_dimension_numbers = #stablehlo.scatter< + update_window_dims = [1], + inserted_window_dims = [0, 1], + scatter_dims_to_operand_dims = [0, 1], + index_vector_dim = 1 + >, + indices_are_sorted = true, + unique_indices = true + } : (tensor<200x100x300xf32>, tensor<10x2xi32>, tensor<10x300xf32>) -> + tensor<200x100x300xf64> + func.return %0 : tensor<200x100x300xf64> +} + +// CHECK-LABEL: "op_select_and_scatter" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @op_select_and_scatter(%arg0: tensor<10x24x24x64xf32>, %arg1: tensor<12x13x13x66xf32>, %arg2: tensor) -> tensor<10x24x24x64xf32> { + // CHECK: "vhlo.select_and_scatter_v1"(%[[ARG0]], %[[ARG1]], %[[ARG2]]) <{ + // CHECK-SAME: padding = #vhlo.tensor_v1 : tensor<4x2xi64>>, + // CHECK-SAME: window_dimensions = #vhlo.tensor_v1 : tensor<4xi64>>, + // CHECK-SAME: window_strides = #vhlo.tensor_v1 : tensor<4xi64>> + // CHECK-SAME: }> ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG31:arg.*]]: !vhlo.tensor_v1, %[[ARG41:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: %[[VAL11:.*]] = "vhlo.compare_v1"(%[[ARG31]], %[[ARG41]]) <{compare_type = #vhlo, comparison_direction = #vhlo}> : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + // CHECK-NEXT: "vhlo.return_v1"(%[[VAL11]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }, { + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG32:arg.*]]: !vhlo.tensor_v1, %[[ARG42:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: %[[VAL12:.*]] = "vhlo.add_v1"(%[[ARG32]], %[[ARG42]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + // CHECK-NEXT: "vhlo.return_v1"(%[[VAL12]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1<10x24x24x64x!vhlo.f32_v1>, !vhlo.tensor_v1<12x13x13x66x!vhlo.f32_v1>, !vhlo.tensor_v1) -> !vhlo.tensor_v1<10x24x24x64x!vhlo.f32_v1> + %0 = "stablehlo.select_and_scatter"(%arg0, %arg1, %arg2) ({ + ^bb0(%arg3: tensor, %arg4: tensor): + %1 = "stablehlo.compare"(%arg3, %arg4) {compare_type = #stablehlo, comparison_direction = #stablehlo} : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }, { + ^bb0(%arg3: tensor, %arg4: tensor): + %1 = "stablehlo.add"(%arg3, %arg4) : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }) { + window_dimensions = array, + window_strides = array, + padding = dense<1> : tensor<4x2xi64> + } : (tensor<10x24x24x64xf32>, tensor<12x13x13x66xf32>, tensor) -> tensor<10x24x24x64xf32> + func.return %0 : tensor<10x24x24x64xf32> +} + +// CHECK-LABEL: "op_select_and_scatter_with_promotable_types" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @op_select_and_scatter_with_promotable_types(%arg0: tensor<10x24x24x64xf32>, %arg1: tensor<12x13x13x66xf32>, %arg2: tensor) -> tensor<10x24x24x64xf64> { + // CHECK: "vhlo.select_and_scatter_v1"(%[[ARG0]], %[[ARG1]], %[[ARG2]]) + // CHECK: ^[[BB:bb.*]](%[[ARG1:arg.*]]: !vhlo.tensor_v1, %[[ARG2:arg.*]]: !vhlo.tensor_v1): + // CHECK: %[[VAL:.*]] = "vhlo.add_v1"(%[[ARG1]], %[[ARG2]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + // CHECK: "vhlo.return_v1"(%[[VAL]]) : (!vhlo.tensor_v1) -> () + // CHECK: }) : (!vhlo.tensor_v1<10x24x24x64x!vhlo.f32_v1>, !vhlo.tensor_v1<12x13x13x66x!vhlo.f32_v1>, !vhlo.tensor_v1) -> !vhlo.tensor_v1<10x24x24x64x!vhlo.f64_v1> + %0 = "stablehlo.select_and_scatter"(%arg0, %arg1, %arg2) ({ + ^bb0(%arg3: tensor, %arg4: tensor): + %1 = "stablehlo.compare"(%arg3, %arg4) {compare_type = #stablehlo, comparison_direction = #stablehlo} : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }, { + ^bb0(%arg3: tensor, %arg4: tensor): + %1 = "stablehlo.add"(%arg3, %arg4) : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }) { + window_dimensions = array, + window_strides = array, + padding = dense<1> : tensor<4x2xi64> + } : (tensor<10x24x24x64xf32>, tensor<12x13x13x66xf32>, tensor) -> tensor<10x24x24x64xf64> + func.return %0 : tensor<10x24x24x64xf64> +} + +// CHECK-LABEL: "op_select" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}, %[[ARG2:.*]]: {{.*}}) +func.func @op_select(%arg0: tensor, %arg1: tensor, %arg2: tensor) -> tensor { + // CHECK: "vhlo.select_v1"(%[[ARG0]], %[[ARG1]], %[[ARG2]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.select"(%arg0, %arg1, %arg2) : (tensor, tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_send" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_send(%arg0: tensor, %arg1: !stablehlo.token) -> !stablehlo.token { + // CHECK: "vhlo.send_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: channel_id = #vhlo.integer_v1<0 : i64>, + // CHECK-SAME: channel_type = #vhlo.integer_v1<2 : i64>, + // CHECK-SAME: is_host_transfer = #vhlo.bool_v1 + // CHECK-SAME: }> : (!vhlo.tensor_v1, !vhlo.token_v1) -> !vhlo.token_v1 + %0 = "stablehlo.send"(%arg0, %arg1) { + channel_handle = #stablehlo.channel_handle, + is_host_transfer = true + } : (tensor, !stablehlo.token) -> !stablehlo.token + func.return %0 : !stablehlo.token +} + +// CHECK-LABEL: "op_set_dimension_size" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_set_dimension_size(%arg0: tensor, %arg1: tensor) -> tensor<16xf32> { + // CHECK: "vhlo.set_dimension_size_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: dimension = #vhlo.integer_v1<0 : i64> + // CHECK-SAME: }> : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1<16x!vhlo.f32_v1> + %0 = "stablehlo.set_dimension_size"(%arg0, %arg1) { + dimension = 0 : i64 + } : (tensor, tensor) -> tensor<16xf32> + func.return %0 : tensor<16xf32> +} + +// CHECK-LABEL: "op_shift_left" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_shift_left(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.shift_left_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.shift_left"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_shift_right_arithmetic" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_shift_right_arithmetic(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.shift_right_arithmetic_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.shift_right_arithmetic"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_shift_right_logical" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_shift_right_logical(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.shift_right_logical_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.shift_right_logical"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_sign" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_sign(%arg0: tensor) -> tensor { + // CHECK: "vhlo.sign_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.sign"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_sine" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_sine(%arg0: tensor) -> tensor { + // CHECK: "vhlo.sine_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.sine"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_slice" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_slice(%arg0: tensor<16xf32>) -> tensor<4xf32> { + // CHECK: "vhlo.slice_v1"(%[[ARG0]]) <{ + // CHECK-SAME: limit_indices = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: start_indices = #vhlo.tensor_v1 : tensor<1xi64>>, + // CHECK-SAME: strides = #vhlo.tensor_v1 : tensor<1xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<4x!vhlo.f32_v1> + %0 = "stablehlo.slice"(%arg0) { + start_indices = array, + limit_indices = array, + strides = array + } : (tensor<16xf32>) -> tensor<4xf32> + func.return %0 : tensor<4xf32> +} + +// CHECK-LABEL: "op_sort" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_sort(%arg0: tensor<16xf32>) -> tensor<16xf32> { + // CHECK: "vhlo.sort_v1"(%[[ARG0]]) <{ + // CHECK-SAME: dimension = #vhlo.integer_v1<0 : i64> + // CHECK-SAME: is_stable = #vhlo.bool_v1 + // CHECK-SAME: }> ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG1:arg.*]]: !vhlo.tensor_v1, %[[ARG2:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: %[[VAL1:.*]] = "vhlo.compare_v1"(%[[ARG1]], %[[ARG2]]) <{compare_type = #vhlo, comparison_direction = #vhlo}> + // CHECK-NEXT: "vhlo.return_v1"(%[[VAL1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1<16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x!vhlo.f32_v1> + %0 = "stablehlo.sort"(%arg0) ({ + ^bb0(%arg1: tensor, %arg2: tensor): + %1 = "stablehlo.compare"(%arg1, %arg2) {compare_type = #stablehlo, comparison_direction = #stablehlo} : (tensor, tensor) -> tensor + "stablehlo.return"(%1) : (tensor) -> () + }) { + dimension = 0 : i64, + is_stable = true + } : (tensor<16xf32>) -> tensor<16xf32> + func.return %0 : tensor<16xf32> +} + +// CHECK-LABEL: "op_sqrt" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_sqrt(%arg0: tensor) -> tensor { + // CHECK: "vhlo.sqrt_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.sqrt"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_subtract" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_subtract(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.subtract_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.subtract"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_tan" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_tan(%arg0: tensor) -> tensor { + // CHECK: "vhlo.tan_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.tan"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_tanh" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_tanh(%arg0: tensor) -> tensor { + // CHECK: "vhlo.tanh_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.tanh"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_torch_index_select" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_torch_index_select(%arg0: tensor<5x1x5xf32>, %arg1: tensor<2xi32>) -> tensor<2x1x5xf32> { + // CHECK: "vhlo.torch_index_select_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: batch_dims = #vhlo.integer_v1<0 : i64> + // CHECK-SAME: dim = #vhlo.integer_v1<0 : i64> + // CHECK-SAME: }> : (!vhlo.tensor_v1<5x1x5x!vhlo.f32_v1>, !vhlo.tensor_v1<2x!vhlo.i32_v1>) -> !vhlo.tensor_v1<2x1x5x!vhlo.f32_v1> + %0 = "stablehlo.torch_index_select"(%arg0, %arg1) { + dim = 0 : i64, + batch_dims = 0 : i64 + } : (tensor<5x1x5xf32>, tensor<2xi32>) -> tensor<2x1x5xf32> + func.return %0 : tensor<2x1x5xf32> +} + +// CHECK-LABEL: "op_transpose" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_transpose(%arg0: tensor<16x8xf32>) -> tensor<8x16xf32> { + // CHECK: "vhlo.transpose_v1"(%[[ARG0]]) <{ + // CHECK-SAME: permutation = #vhlo.tensor_v1 : tensor<2xi64>> + // CHECK-SAME: }> : (!vhlo.tensor_v1<16x8x!vhlo.f32_v1>) -> !vhlo.tensor_v1<8x16x!vhlo.f32_v1> + %0 = "stablehlo.transpose"(%arg0) { + permutation = array + } : (tensor<16x8xf32>) -> tensor<8x16xf32> + func.return %0 : tensor<8x16xf32> +} + +// CHECK-LABEL: "op_triangular_solve" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_triangular_solve(%arg0: tensor<16x16xf32>, %arg1: tensor<16x16xf32>) -> tensor<16x16xf32> { + // CHECK: "vhlo.triangular_solve_v1"(%[[ARG0]], %[[ARG1]]) <{ + // CHECK-SAME: left_side = #vhlo.bool_v1, + // CHECK-SAME: lower = #vhlo.bool_v1, + // CHECK-SAME: transpose_a = #vhlo, + // CHECK-SAME: unit_diagonal = #vhlo.bool_v1 + // CHECK-SAME: }> : (!vhlo.tensor_v1<16x16x!vhlo.f32_v1>, !vhlo.tensor_v1<16x16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<16x16x!vhlo.f32_v1> + %0 = "stablehlo.triangular_solve"(%arg0, %arg1) { + left_side = true, + lower = true, + unit_diagonal = true, + transpose_a = #stablehlo + } : (tensor<16x16xf32>, tensor<16x16xf32>) -> tensor<16x16xf32> + func.return %0 : tensor<16x16xf32> +} + +// CHECK-LABEL: "op_tuple" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_tuple(%arg0: tensor) -> tuple> { + // CHECK: "vhlo.tuple_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tuple_v1> + %0 = "stablehlo.tuple"(%arg0) : (tensor) -> tuple> + func.return %0 : tuple> +} + +// CHECK-LABEL: "op_unary_einsum" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_unary_einsum(%arg0: tensor<8x16xf32>) -> tensor<8xf32> { + // CHECK: "vhlo.unary_einsum_v1"(%[[ARG0]]) <{ + // CHECK-SAME: einsum_config = #vhlo.string_v1<"ab->a"> + // CHECK-SAME: }> : (!vhlo.tensor_v1<8x16x!vhlo.f32_v1>) -> !vhlo.tensor_v1<8x!vhlo.f32_v1> + %0 = "stablehlo.unary_einsum"(%arg0) { + einsum_config = "ab->a" + } : (tensor<8x16xf32>) -> tensor<8xf32> + func.return %0 : tensor<8xf32> +} + +// CHECK-LABEL: "op_uniform_dequantize" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_uniform_dequantize(%arg0: tensor>) -> tensor { + // CHECK: "vhlo.uniform_dequantize_v1"(%[[ARG0]]) : (!vhlo.tensor_v1>) -> !vhlo.tensor_v1 + %0 = "stablehlo.uniform_dequantize"(%arg0) : (tensor>) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "op_uniform_quantize" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_uniform_quantize(%arg0: tensor) -> tensor> { + // CHECK: "vhlo.uniform_quantize_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1> + %0 = "stablehlo.uniform_quantize"(%arg0) : (tensor) -> tensor> + func.return %0 : tensor> +} + +// CHECK-LABEL: "op_while" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @op_while(%arg0: tensor) -> tensor { + // CHECK: "vhlo.while_v1"(%[[ARG0]]) ({ + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG1:arg.*]]: !vhlo.tensor_v1): + // CHECK-NEXT: "vhlo.return_v1"(%[[ARG1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }, { + // CHECK-NEXT: ^[[BB:bb.*]](%[[ARG1:arg.*]]: !vhlo.tensor_v1) + // CHECK-NEXT: "vhlo.return_v1"(%[[ARG1]]) : (!vhlo.tensor_v1) -> () + // CHECK-NEXT: }) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.while"(%arg0) ({ + ^bb0(%arg1: tensor): + "stablehlo.return"(%arg1) : (tensor) -> () + }, { + ^bb0(%arg1: tensor): + "stablehlo.return"(%arg1) : (tensor) -> () + }) : (tensor) -> tensor + func.return %0: tensor +} + +// CHECK-LABEL: "op_xor" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @op_xor(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.xor_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.xor"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// ============ TYPES ============ + +// CHECK-LABEL: "type_i1" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_i1(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.and_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.and"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_i2" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_i2(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_i4" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_i4(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_i8" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_i8(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_i16" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_i16(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_i32" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_i32(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_i64" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_i64(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_ui2" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_ui2(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_ui4" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_ui4(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_ui8" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_ui8(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_ui16" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_ui16(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_ui32" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_ui32(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_ui64" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_ui64(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_f8E3M4" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_f8E3M4(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_f8E4M3" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_f8E4M3(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_f8E4M3FN" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_f8E4M3FN(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_f8E5M2" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_f8E5M2(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_f8E4M3FNUZ" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_f8E4M3FNUZ(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_f8E4M3B11FNUZ" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_f8E4M3B11FNUZ(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_f8E5M2FNUZ" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_f8E5M2FNUZ(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_bf16" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_bf16(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_f16" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_f16(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_f32" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_f32(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_f64" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_f64(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_complex_f32" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_complex_f32(%arg0: tensor>, %arg1: tensor>) -> tensor> { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1>, !vhlo.tensor_v1>) -> !vhlo.tensor_v1> + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor>, tensor>) -> tensor> + func.return %0 : tensor> +} + +// CHECK-LABEL: "type_complex_f64" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_complex_f64(%arg0: tensor>, %arg1: tensor>) -> tensor> { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1>, !vhlo.tensor_v1>) -> !vhlo.tensor_v1> + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor>, tensor>) -> tensor> + func.return %0 : tensor> +} + +// CHECK-LABEL: "type_tf32" +// CHECK: #vhlo.type_v1 +func.func @type_tf32() attributes {stablehlo.attr = tf32 } { + return +} + +// CHECK-LABEL: "type_none" +// CHECK: #vhlo.type_v1 +func.func @type_none() attributes {stablehlo.attr = none } { + return +} + +// CHECK-LABEL: "type_dynamism_ranked" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @type_dynamism_ranked(%arg0: tensor) -> tensor { + // CHECK: "vhlo.abs_v1"(%[[ARG0]]) : (!vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.abs"(%arg0) : (tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_per_tensor_quantization" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_per_tensor_quantization(%arg0: tensor>, %arg1: tensor>) -> tensor> { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1>, !vhlo.tensor_v1>) -> !vhlo.tensor_v1> + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor>, tensor>) -> tensor> + func.return %0 : tensor> +} + +// CHECK-LABEL: "type_per_axis_quantization" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @type_per_axis_quantization(%arg0: tensor<2x!quant.uniform>) -> tensor<2x!quant.uniform> { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG0]]) : (!vhlo.tensor_v1<2x!vhlo.quant_per_axis_v1>, !vhlo.tensor_v1<2x!vhlo.quant_per_axis_v1>) -> !vhlo.tensor_v1<2x!vhlo.quant_per_axis_v1> + %0 = stablehlo.add %arg0, %arg0 : tensor<2x!quant.uniform> + func.return %0 : tensor<2x!quant.uniform> +} + +// CHECK: function_type = #vhlo.type_v1 !vhlo.token_v1>> +// CHECK-LABEL: "type_token_callee" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @type_token_callee(%arg0: !stablehlo.token) -> !stablehlo.token { + // CHECK: "vhlo.return_v1"(%[[ARG0]]) : (!vhlo.token_v1) -> () + return %arg0 : !stablehlo.token +} + +// CHECK: function_type = #vhlo.type_v1 !vhlo.token_v1>> +// CHECK-LABEL: "type_token_caller" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @type_token_caller(%arg0: !stablehlo.token) -> !stablehlo.token { + // CHECK: "vhlo.call_v1"(%[[ARG0]]) <{callee = #vhlo.string_v1<"type_token_callee">} + // CHECK-SAME: (!vhlo.token_v1) -> !vhlo.token_v1 + %0 = func.call @type_token_callee(%arg0) : (!stablehlo.token) -> !stablehlo.token + return %0 : !stablehlo.token +} + +// CHECK-LABEL: "type_tuple" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}) +func.func @type_tuple(%arg0: tuple>) -> tuple { + %0 = "stablehlo.custom_call"(%arg0) { + call_target_name = "foo" + // CHECK: (!vhlo.tuple_v1>) -> !vhlo.tuple_v1 + } : (tuple>) -> tuple + return %0 : tuple +} + +// ============ DEPENDENCIES ============ + +func.func @composite_target(%arg0: tensor) -> tensor { + return %arg0: tensor +} diff --git a/stablehlo/tests/vhlo/stablehlo_legalize_to_vhlo.1_7_0.mlir.bc b/stablehlo/tests/vhlo/stablehlo_legalize_to_vhlo.1_7_0.mlir.bc new file mode 100644 index 0000000000000000000000000000000000000000..ef20a90e239375c0541eb853aed1e4a44ab5d74b GIT binary patch literal 19137 zcmcJ10gO~d*6zJkx4QmIr|Ea;G@W5m^lNU0Ni%Pl9r%GC2$+G;KHvugB1Q~!dS-f{ zVWxZRnE}CwznH~{5hF&781adbjT+gg5hF%6;**US*(XLevXRZYSvP9d&AM4P%VzO? zr|!Mo_s)R(-pl_+yQ}Ja=bSoq>eQ*KJ9k*~?|>nBC zWhPAV2b0J7*U40-HS4x_bj@9`_@?DIuU@zDwmXV_+jiDQcHe#P{SQ3!$YW1D^~`fW zdFiLGz46x1-u?Lpzxeo2&1AFLe72Mo*jl!UZDj+j z%674R>;OB&j<93w1Ut!2u`}!(yTC57E9?vQ4f~E=V=+FNPvz73Og@{>=Sz8kujQNg zRzAS1d>7xx5AZ|$2tUS8@RR%$Kg0R-_*8j;n^MM8oXL1Rp2UCax>Ct?sCFfjk8JGf zq8h%sQYql^WU?#%7*$ZyMJnr8h=L#e4fc3^Zakiff4s2^-R0dP^pP=Xevx;?(tXnsoJ<{kUmFmj6Xpw{QL#~A{bv+(8MJmNF@MKCR zlQNmf$hp}RRa)ItDs@|XD&xADR*4ABw1SYtC;F2~wE}2uZOvvgnGQFZiOXU!B{TRx zlg+wWaA$zDyRE6#WU4iTE;3+l1xj=+h%c-FO>6CHZwEC?0137SyeUv!;%kTIEPkjC zU76J|5C3`pQ%%>sO8C3AH7+GY?#)0|DxS%(!jH1zPn`45xT*f^ew0d?f~QhKnAw|h zhW}&wW%h0-AZ1_WrhAlwDFB%dxxY|G}GxOn|__cQl5?myh`-5JciK%$l} zDn<4b?-}25&@1-=_ha`H_t)+p-9NiinR|q*zs9-EkpTqfhhmQSUr+td|1mk0a#BjT zzjMEI|KR?`{j2*o_wVi`=FVa6eC94^sX-Z-oIQUXe?Hro!;A^lM#9YSxUIfdjHwt?lbD*! z)D)(sGBu5<=}gUFY9>>&n3~Ph9H!>8g!uLD-~3iBVrnT%DO+Jo1*TRpwU((3%>AX> z#N1ESW~R0>)yvcXQ#+WdGF4}47gKwg+Q-y>rVcRow{4=w_}>3f2bqFTey7y&W9m3lCzyJXsgq2-%G^JxQ%s#^>I_q7nL5YRd8RHfb&;t{OkHN`3R9mm^#xO3 zF*nB4H%xuY+{sLR$JAA(t}(^9ig7iGtI6D*hLLi2ItI(tG_Iy|HG{h|F<$P@!jQQ; z8>8lG4p;NJTEx{-u9k6C;A$0jmtwqJZQyDXSDU$8z;LJV3lxk4lz6V&dshO6VWvSVgnq#?`nE94k zWT~Z=dxWWFmMU0kmE|6VD=f9aa*r{!$x@pw7n8Qta!+9XE%!w@#8NvfRkc*za!(-& zEVb8C`z*EJQU@$`&{Bsib=XozEcY}f-g3_{bYAmPP%+_ti^v!5RRq6q5g}8A8{=xKP}77v8G#|(DToc>PUC8(aA$BeOSrSR znl0Qp2oK@TM}!D>DS||}1;mMP5gW^dy9v=E+^q;0;SO-MR=8EfjBs}$Y=pZHkt5Vr z;T}Nb2p1tSAlyR;9-*p2)rETu!6V$`Twq=a7&(g#RE#%Pe9y)O_5${Q)X5j~XegG3vYK`$wlOQ}5PGNnv)NT|aid#9<6 zAfe_sKNd@yrkP#Q$c0(cCR-BXWXyRrmQzQCI!61pE5H<3nUguu%3FAg$;Df5VGkEc ztckB;-^A2$ky0BVOUK6QNd;d9^pV(I2f3n4~A%W&zm=ei7swJ?TZ|$I;OMhdd0pDwFjLi zRECto1Se(YMH)1*9v#`Dr3H1{?%6{oz{XoX>#dslbeodI=q8-IEa~h9DWan|8oxS0SG2X zn&zEg63HY_I{Zogq{AK5$SFw>=JF9o%>9WNdBNe!`Emk*%v-=;a>Tv&@%tUoImSC3 zId8!V{*)tccAw_E9dWbE_c%N*%s32*^Ema5Zhvg@mmS%)a53+4WZO?o-lpw@eVWJQ z32Kv7LQ0q)&p<3A@$FU7aHypzILAPcldU!l69b_FWLs;^I-;<@^T#{z$0OtqUA*gHWs(gx z4F=3B9r51J`TOMk9QFJtO5W}8c5Zg_XM)tY|37-J@vGXjc1NsU%~#*#h&5~Y8VqpV zI=;>k>(}%3Eskg=}0NU!Iw=- zJCW+b!b(t{5q8SDxI>t?n5MK&?%?Ltn79QKWOZ;HbxqT-3%DUjfr+w^V}Z#Ch9hwZ zi$}0T1WQIR1VBhG6~WRGEEB<6B3Nq#i`uCoST-V;i(qa9Yl~p*5iB3U;G)nNI;GXl zMVy;PykH{z;Xinc!(-iHWNsLl7e*F@k%eJoaT8f@iY3xYAOms3gzlTdd_7IRTg>HQ zWJMUc*+*_Q5(RT5GF-#b)nQ~!7+L2df@Ibs7dB)z`pDl1xfM&Uf!yYMt0!lq3+CwZ%rXL0cPDgYZVO|TD7G_<4MnkJvcq-x&F3^IbI`NzJK zb4F*ue1IpLPJYlc4+jPfVe9cM5Q2<#^EBwyYXe5zsl%?0ymon-xm@k|5x zx?nyVMxOKCbG-!gyf0-MD+=aMXiS0eFZfcGA!B*Le2Kplj1Hc7xgmw+8Cirsl~yOY zUe0>0t*cl(z{Pr-bXcZLMt^24Sw^q_H5!F-!P6%MMOdCrs% zuc$MlycZcD3rA3=HqC5zI_x!FNUSYHq%%Af;p|0NdFrGG+6wD9k*gzif*2IUt zoS8Nj7tCMK$)b_TKWfM=ESMih@{d`=uXL!f-d4pVEr|CqeZqY285{p2AEc zyUF~FzYHsyGP&`ANZZV>rL~0?<(50g3}=)18{S0@Y6?w=UJCc$O6x%qT6r2hwQe$h z$J@ZljeWjP6b5*WMsQd*UBLTKs7KqqN$*wbnudYKG;X zZeTTf`Li#RHok<6H*tE;_)BAHV8Q=2yx{*9UebT3er}*XSQY;W3w)33Q6SLLVvrXT zK}ZAwjCsDN?Vr*H%E)|;cfFTtVvy1spiUi+hf~KSKsxIr5=Iw#3~!s00}P%0p8OVA z1Mf@$)`Jslyi*9#Y5cBWPGxk0jZ-ApFjvMCN$^br-$I`7_=NFW;^UbH7lQW|bGpwX zq09J9pvhl!QX;Y4V$J}Motlg zuC?=~YL$ZaZVDOtqDWs9^lBQPMtfb_M1C1XmIZz4bX#EIe7g!*r?;P(#wR2fPAzK# zosRJ_FkA(KY2Og&%o#}3n^-s>Zw3~M{^*Hms}{r{F@+yNXErp2y@67ltp`}xsXKt_ z%v&lMzbKehhRAPbr#eu7J$<;$+(nZ9Lfac4j`2a%E&BqE-VU&z@mE3`4+L_i@qSe9 zAP`(#?4L7Qgy@F$+(RJhIX8{>3g+R6=|`Fvwv(d~>=>|aij{f)72XAWobj{%v554Z z(6XMp-X%LiCcX%)E3_G%WRVT$Rls^0ydzcgXmkpocBi);oo12!=nPQWzoow+on_G- z=^XI6ga=#Fc^2K1E`VVkF-&7C&g)I<;y8{=;Lr~1Hr~*nm4<Hd-^1h^r*Z|eKL>i z>QjK~P=LQ_&z~BFrvcW^&Kp0~&JL~Q>A*TD0xvS-<$^hbg0Hc9W&&JI^O(SLeaXv7 zko9wtS2hm6v%sv!v&48II-c1;$awG6F$XI*eC(JHG>ZlGlVy5Y2TN*Epw2X&hdLZ^ zf;GLgi98qWXjv0^Hi{IQ$TLx76_AZyx_)|-xfZ#WHa&l0T0*=*_ZuJ(oQosJ5vHd3aph90972io!G&=$WHln{y+>c2H-ufgaTi z2zS%?alt$miT2~bwopQyffJ#p@r|a&>z#l|;|WOlr#~EV@f1_XPY@szjG#;Y$v~t` zr{Y&RfAgQ7vrYxJ`RC%(oWIqy4PK8#Vldh>kh%|t9eWm=#lVCE^;wSRW7_}Hx``)} zc8l3!24_3rnTsgHoxrBu4c{>M9P|Vuxlq_pFVkZ(y7 z%`@3ORiktqN*i+v<}@pkyru_e-ZAc+a7LT~RL8L67&R!iv3y7`t>Kv=Y-k)dD}?PF zhs_4&$4-T8ZASE*CbBJx%-8ymfrL>mn2RjFvMIF`*zMk4gq!3t%gZI9!}K4Txjcyd zLbIp7XiuwjPvkArC=nDI@!FfR9Z30G(&2$a4g*Vd!A#D6*^~MfR{j|o`g|H(5_UyA7TOY!X1{mU-az!}4j|JGgc^YdC$sG@{ z=bzWu#t?QQz+QMkW4DH|7X$3&mo;`<2s;^Iue_qM+e6r^0k(d<#_}QTRDiwyy2kDZ zVW$J^%{Mi+C4`*`u(#jVSTTg14X}6K(O4;joeQw{-qToL2sb9CY{Nt)^+asww`?2aXM4!WG2y_ zOt)k*$(CHQ)k!;vj?Tq^T$M^@=cc>e_H1r-TW(=8n@--G?Z~CGnHGAdud^$KE}YhU zdslaRDybH(R0{7Owl2tZcD1(V@FrhZ$MVj6KHrvGyue-9-oCJXVb|P+iykN*O^ZxotDnl?800+ zg8{-#N@d&9Z5cP&nN)B}KAFuV9r)Pk9jgqER;tFX?SnOAsMbF=ST^eA(Xo0JulO1R zW7R$?Oa1*+^woxjOZBp@j*X1ghKhZq!9mS9FiOQ}y;7=f8yhUuizBtcU7B;GuQWPZ zt`~RBG3wQA#oo$jaa*}su9rq@Aa)!5H7!bt>gE2iJ_yY*O1&e5jg$w=eWS%vwZGU< z)2-D2^tpFes{OUy#648Ht1>h;L{%RP32iHlZuhL{-%~9ORr-n{3QX{9!eG!jOc|{e z_0YUlla)*%!)kSH^+?%k_mxKUV1p5m1%11Svo5Vb671S zu;KUeuCneuN-YiSr5@@)>%l~iY%dLKgRvw=D|&h=dYbFyVT`F%3|d1aa*K|2KRkvJ z92ISsR_YC`UPc)N!bsqi;o5FbbhtL$SJj>yF6nN(39Su}R)#8jOS=EwQoUaB*sI>E zs+JMD+RC9Ztn=YP9TY>AYOqj-O2afVa`1@nN7ReMgJUDbnl~ZT21{k6H~=|MTctKy z(!`;X2M$nc8+`7C2i7fIugxXm#EBRfta$?{-!+VW5QCl4$zF<_JBG)^>V9(ualU`G^*2 z*$Ze?M-cCN?5HFAm8nQX2kXZ3A!Vm>IV9N3 zZazC{Dth})WdsYkzk;=+gS~vGabvJr{sC~?4}zmVAc@WK#(fS>l+;7TQpAWS2x<(= zpmYPVQ7o~+S{<3=`l2J1ZPjxB^|3Kzy$~AOt4qU`A|)|Oir^YXA{wYP)ZBovhAdpE zmInRKZoq}j1V6Z(0WY9vhSjYM%B6sXmcZY0{cG-s_>*UmhqS2YX5;pxd#} z{Q!im$wTP~RT|ue8NtpM)ft6Gx7W+%;y``R_2hy=*bkl`N zXG*LsJe~4-@hq9i3*18_lNQfa&ADSa=oe@Kn#tE-UYleD*Mki(e zn5s|B!I8BQ4^2-0h}*EnKTl3zpxt5uah#v&642lohj~ZZ2I?Pn8*MrSHyU(SZZx6? z^zmfxOy8jT$M|M@!nL3Y;b3mmhKsmB=%T-07s2+W8#vzk!yv}Sy(7SU({^Kp6^HA! zA>?6fYdSGRD?Dz*NvKN|kXt>^M?mGag3|_HIp%?(&*6?#>XQQG@O# zy2MdJmpEGJGKg^Ep>u~OPCS=*dllJj^>B`E@!o1y%o! z<2C7ArE8%Rm)FLz3|owM!p5;o6GLl-x@VZf<}D7E_8>rw;jvzvu1U~4 z?&(@+X%SGl52%vKqPQ*Gu1136wYD0XrIG~1` z{t-4z(#PB|A$%Stx_4sMwa^*6ai|^#P?I(^D(Gw;I+Wqy7HWCU)O?f}hU=AGINnmb zIrJYK^27^)79M|hAYx@ef8&y&OMQRVHQ!r}I|&hSPw|V!^~G=Ns}0q0+wlthpg>o> ztB|hxHzcZi_aEK~WNFsO=^3Npw%-dAuKVJC(Isbm^brxKGsTIB$d#JvLc~yGERR2i!_9~gOU?@?3pu~L{CJZd7EemX@JJgxGsi4{CMqU&O1 zj$i((U;bNw&-W{H1CIGV%UB>YR%uXtsj*78FE&;QV>t9*1R=-p8;~~<^~3-W!>F{wILGNo9*6#z=UQcFl8XHBzRsh5Fiagz%kl@s(6ax z_3mvcBSS^Z*iKySv;%QuEz;Q<4_$nZ>qkaS5YJ9Wt^Hd`H2RwK{+qtxa@Bh}@ zhf1H}ZM4XP!`NZ}g->I~&>kE*N2#E@1+Ig5I%WLJ=eeo)%XBj?v+`%Qm^YUy@7QwQ zB>XvFR=x|;tyFmrl_9G999T?a@1ur)r~$MO@Eh^0{LmIVwfHY=ag(lmWXo$YUHjOU zSE&}4pV+DIVs=iZB>ll)T>jE_Dxv15wo?l=e`Tk>ZF1i(e}|sp^7nS??Jr_Y9bekc z+iwQVJLK24Soo8;yhHxMmJ2_R#pNI6pHRDk+MnfLP`ixU68Tq~ub}d8wz#ATf4BMa zxV%~Z!xk4oxLJO0iwm&?Dva6uxrE#zW6T!kLE0iGf%I%bu9TCRZ6}jYC#gP#+4yH7 z&c$?Ns&1T(;om=)#^elUC*&SE6WmUs6aN&#EGB0Yjow|bB}fT*x10}|MB=tFCn*;( zxfCsjS_yfNT!s$8Q>=_)%bGEQ4LA@7wtU?Bd0 zEFtfcRc7bHNGo7tOB!r(xr=)EvE0jSM^m3C@@lyc24k#pjogpXfMvBj zK!bNMur=}^2`!L^Fo;BF0xmkteM@M|4C z;-*_k@B~_?Vkxn6h)j5qwB_YVD*EKBRP2$b$o)iG*Y54uKgUQXx=^W~3a5>YHn}yd-UW{#f zd3RFI=5h|i6QpiF_)j1pAC!xTe<_#CcyrnpW7?0$mM?y3G4U3NV-=TcJ&hZnqm$^H zxSgpTj^&QTl6M}B-RVfYakrKC@>I<}7?a66C1xxy2S}W&eK zNr`utz5+q_+(TXC#iVbktM9nH3eEeW`7wEobUiMag<`dgS+>mWizVeGOHQ`HJH?Vy z3BudDUNPM(W>B#}&a`ZvA;-<4c3#f*ia8$Bd@7!hi@erSD%QzmRIHH&Naiq8mRyTI zH*SQMN8|>=@^TaPyxEdlsrk61ltJiksyrDz?beRK(>OuQ=-!=csrrx^?={re~y7Y)6sz$v*cGK{1|@2j$#ddv5q0P!+QKq{VI{x%WGc2gl@&Ch|5V{ zFMsoW>zeku, %arg1: tensor) -> tensor { func.return %0 : tensor } +// CHECK-LABEL: "type_f8E3M4" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_f8E3M4(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + +// CHECK-LABEL: "type_f8E4M3" +// CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) +func.func @type_f8E4M3(%arg0: tensor, %arg1: tensor) -> tensor { + // CHECK: "vhlo.add_v1"(%[[ARG0]], %[[ARG1]]) : (!vhlo.tensor_v1, !vhlo.tensor_v1) -> !vhlo.tensor_v1 + %0 = "stablehlo.add"(%arg0, %arg1) : (tensor, tensor) -> tensor + func.return %0 : tensor +} + // CHECK-LABEL: "type_f8E4M3FN" // CHECK-NEXT: (%[[ARG0:.*]]: {{.*}}, %[[ARG1:.*]]: {{.*}}) func.func @type_f8E4M3FN(%arg0: tensor, %arg1: tensor) -> tensor {