From c17f3a56fe29027a30c241427d64d4f0fdabe234 Mon Sep 17 00:00:00 2001 From: Roman Kazantsev Date: Mon, 25 Nov 2024 23:27:19 +0400 Subject: [PATCH] [TF FE] Stabilize DivNoNan layer test on all platforms (#27711) **Details:** Stabilize DivNoNan layer test on all platforms **Ticket:** TBD Signed-off-by: Kazantsev, Roman --- .../tensorflow_tests/test_tf_DivNoNan.py | 38 +++++++++---------- 1 file changed, 18 insertions(+), 20 deletions(-) diff --git a/tests/layer_tests/tensorflow_tests/test_tf_DivNoNan.py b/tests/layer_tests/tensorflow_tests/test_tf_DivNoNan.py index 5a986a9ea6244f..357a0a962be8c0 100644 --- a/tests/layer_tests/tensorflow_tests/test_tf_DivNoNan.py +++ b/tests/layer_tests/tensorflow_tests/test_tf_DivNoNan.py @@ -1,12 +1,13 @@ # Copyright (C) 2018-2024 Intel Corporation # SPDX-License-Identifier: Apache-2.0 -import platform - import numpy as np import pytest import tensorflow as tf from common.tf_layer_test_class import CommonTFLayerTest +from common.utils.tf_utils import mix_array_with_value + +rng = np.random.default_rng(23235) class TestDivNoNan(CommonTFLayerTest): @@ -16,37 +17,34 @@ def _prepare_input(self, inputs_info): x_shape = inputs_info['x:0'] y_shape = inputs_info['y:0'] inputs_data = {} - inputs_data['x:0'] = np.random.randint(-10, 10, x_shape).astype(self.input_type) - # generate y in way to have zeros - inputs_data['y:0'] = np.random.randint(-10, 10, y_shape).astype(self.input_type) * \ - np.random.randint(0, 2, y_shape).astype(self.input_type) + inputs_data['x:0'] = rng.uniform(-5.0, 5.0, x_shape).astype(self.input_type) + # provide zeros in y input + y_data = rng.uniform(-5.0, 5.0, y_shape).astype(self.input_type) + y_data = mix_array_with_value(y_data, 0.0) + inputs_data['y:0'] = y_data return inputs_data - def create_div_no_nan_net(self, input_shape, input_type): + def create_div_no_nan_net(self, x_shape, y_shape, input_type): self.input_type = input_type tf.compat.v1.reset_default_graph() # Create the graph and model with tf.compat.v1.Session() as sess: - x = tf.compat.v1.placeholder(input_type, input_shape, 'x') - y = tf.compat.v1.placeholder(input_type, input_shape, 'y') + x = tf.compat.v1.placeholder(input_type, x_shape, 'x') + y = tf.compat.v1.placeholder(input_type, y_shape, 'y') tf.raw_ops.DivNoNan(x=x, y=y) tf.compat.v1.global_variables_initializer() tf_net = sess.graph_def return tf_net, None - test_data_basic = [ - dict(input_shape=[10, 20], input_type=np.float32), - dict(input_shape=[2, 3, 4], input_type=np.float32), - ] - - @pytest.mark.parametrize("params", test_data_basic) + @pytest.mark.parametrize('x_shape', [[], [4], [3, 4], [2, 3, 4]]) + @pytest.mark.parametrize('y_shape', [[2, 3, 4]]) + @pytest.mark.parametrize('input_type', [np.float16, np.float32, np.float64]) @pytest.mark.precommit @pytest.mark.nightly - @pytest.mark.xfail(condition=platform.system() == 'Darwin' and platform.machine() == 'arm64', - reason='Ticket - 122716') - def test_div_no_nan_basic(self, params, ie_device, precision, ir_version, temp_dir, - use_legacy_frontend): - self._test(*self.create_div_no_nan_net(**params), + def test_div_no_nan_basic(self, x_shape, y_shape, input_type, + ie_device, precision, ir_version, + temp_dir, use_legacy_frontend): + self._test(*self.create_div_no_nan_net(x_shape, y_shape, input_type), ie_device, precision, ir_version, temp_dir=temp_dir, use_legacy_frontend=use_legacy_frontend)